English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51756106      Online Users : 554
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/32548
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32548


    Title: 加減應用問題中多餘資訊的辨識
    Authors: 陳文寬
    Contributors: 蔣治邦
    陳文寬
    Keywords: 多餘資訊
    加減應用題
    兩步驟問題
    國小三年級
    Date: 2006
    Issue Date: 2009-09-17 13:23:20 (UTC+8)
    Abstract: Littlefield與Rieser(1993)曾提出語意區辨模型,來解釋多餘資訊特性對多餘資訊辨識的影響,本研究則以Kintsch與Greeno(1985)的閱讀理解模型為基礎,重新探討多餘資訊的辨識。與問題中的問句相比較,多餘資訊句的語意特徵相似度可分為高低兩個水準,多餘資訊句的位置則可能出現在題目中間或後面,本研究由這兩個特性編製出四類多餘資訊句,分別加入六類兩步驟加減應用問題中,要求國小三年級的學童圈選出解題需用到的數字,來探討多餘資訊特性對辨識的影響。
    研究結果發現:整體而言,語意特徵相似度低時,學童的辨識表現較好,所犯的錯誤主要為只圈選兩個相關資訊;語意特徵相似度高時,學童的辨識表現下降,較容易圈選多餘資訊句中的數字。而位置變項的效果並不顯著,且語意特徵相似度與位置變項的交互作用也不明顯。
    進一步分析學童在六類兩步驟問題中的表現,本研究建議閱讀理解模型比語意區辨模型更能合理地解釋學童的辨識表現,而記憶可能是值得進一步探討的因素。此外,部分學童會以問句中的主角為線索,判斷擁有相同主角的句子與解題有關,而造成辨識錯誤。
    Reference: 丁春蘭(2003)。國小學童乘除問題的解題表現、後設認知與認知型式之分析研究。未出版之碩士論文,國立台中師範學院數學教育研究所,台中市。
    林美惠(1997)。題目表徵型式與國小二年級學生加減法解題之相關研究。未出版之碩士論文,國立嘉義師範學院國民教育研究所,嘉義縣。
    洪義德(2002)。不同表徵面積題目對國小六年級學生解題表現之探討。未出版之碩士論文,國立台北師範學院數理教育研究所,台北市。
    陳立倫(2000)。兒童解答數學文字題的認知歷程。未出版之碩士論文,國立中正大學心理研究所,嘉義縣。
    教育部國民小學及國民中學教科圖書印製標準規格(民93)。
    黃敏晃(1997)。國小數學新課程下評量改革的一些想法。國民小學數學科新課程概說(中年級)。民95年3月1日,取材自國立教育研究院籌備處網頁:http:// 203.71.239.3/study/math/newmath3/15.htm
    蔣治邦(1993)。中年級學童解決加減文字題能力之探討:多餘資訊與兩步驟問題。科學教育學刊,1,189-212。
    Babbitt, B. C. (1990, October). Error patterns in problem solving. Paper presented at the International Conference of the Council for Learning Disabilities, Austin, TX.
    Blankenship, C. S., & Lovitt, T. C. (1976). Story problems: Merely confusing or downright befuddling. Journal for Research in Mathematics Education, 7, 290-298.
    Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal of Experimental Psychology, 22, 792-810.
    Cohen, S. A., & Stover, G. (1981). Effects of teaching sixth-grade students to modify format variables of math word problems. Reading Research Quarterly, 16, 175-200.
    Cook, J. L., & Rieser, J. J. (2005). Finding the critical facts: Children’s visual scan patterns when solving story problems that contain irrelevant information. Journal of Educational Psychology, 97, 224-234.
    Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving word problems. Cognitive Psychology, 20, 405-438.
    De Corte, E., Verschaffel, L., & DeWinn, L. (1985). Influence of rewording verbal problems on children’s problem representations and solutions. Journal of Educational Psychology, 77, 460-470.
    Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., Schatschneider, C., & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98, 29-43.
    Hayes, J. R. (1989). The complete problem solver. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations meaning and representation in algebra word problems. In P. Carpenter & M. Just (Eds.), Cognitive processes in comprehension (pp. 89-106). Hillside, NJ: Erlbaum.
    Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109-129.
    Lester, F. K. (1980). Research on mathematical problem solving. In R. J. Shumway(Ed.),Research in mathematics education. NCTM.
    Littlefield, J., & Rieser, J. J. (1993). Semantic features of similarity and children’s strategies for identifying relevant information in mathematical story problems. Cognition and instruction, 11, 133-188.
    Low, R., & Over, R. (1989). Detection of missing and irrelevant information within algebraic story problems. British Journal of Educational Psychology, 59, 296-305.
    Low, R., Over, R., Doolan, L., & Michell, S. (1994). Solution of algebraic word problems following training in identifying necessary and sufficient information within problems. American Journal of Psychology, 107, 423-439.
    Marzocchi, G. M., Lucangeli, D., De Meo, T., Fini, F., & Cornoldi, C. (2002). The disturbing effect of irrelevant information on arithmetic problem solving in inattentive children. Developmental Neuropsychology, 21, 73-92.
    Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 3-23.
    Mayer, R. E. (1982). Memory for algebra story problems. Journal of Educational Psychology, 74, 199-216.
    Mayer, R. E. (1992). Thinking, problem solving, cognition. (2nd ed). NY: W. H. Freeman and Company.
    McKenna, F. P. (1984). Measures of field dependence: Cognitive style or cognitive ability. Journal of Personality and Social Psychology, 47, 593-603.
    Muth, K. D. (1991). Effects of cuing on middle-school students’ performance on arithmetic word problems containing extraneous information. Journal of Educational Psychology, 83, 173-174
    Muth, K. D. (1992). Extraneous information and extra steps in arithmetic word problems. Contemporary Educational Psychology, 17, 278-285.
    Nathan, M. J., & Kintsch, W. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cognition and Instruction, 9, 329-389.
    Nesher, P. (1992). Solving multiplication word problem. In G. Leinhardt, R. Putnam, & R. A. Hattrup(Eds.), Analysis of arithmetic for mathematics teaching(pp. 189-219). Hillsdale, NJ: L. Erlbaum Associates.
    Ng Li, F. L. (1990). The effect of superfluous information on children’s solution of story arithmetic problems. Educational Studies in Mathematics, 21, 509-520.
    Passolunghi, M. C., Cornoldi, C., & De Liberto, S. (1999). Working memory and intrusions of irrelevant information in a group of specific poor problem solvers. Memory and Cognition, 27, 779-790.
    Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80, 44-57.
    Polya, G. ( 1945 ). How to solve it. Princeton, New Jersey:Princeton University Press.
    Reusser, K. (1990). From text to situation to equation: Cognitive simulation of understanding and solving mathematical word problem. In H. Mandl, E. De Corte, N. Bennett, & H. F. Friendrich(Eds.), Learning and instruction: Vol.2.2. Analysis of complex skills and complex knowledge domains(pp. 477- 498). Elmsford, NY: Pergamon Press.
    Riley, M. S., Greeno, J. G., & Heller, J. I.(1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg(Ed.), The development of mathematical thinking(pp. 153-196). New York : Academic Press.
    Schoenfeld, A. H. (1985 ). Mathematical problem solving. New York: Academic Press.
    Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, 55, 374-395.
    Tiedmann, J. (1989). Measures of cognitive styles: A critical review. Educational Psychologist, 24, 261-275.
    van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.
    Description: 碩士
    國立政治大學
    心理學研究所
    92752020
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0927520201
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    52020101.pdf41KbAdobe PDF2917View/Open
    52020102.pdf85KbAdobe PDF2830View/Open
    52020103.pdf62KbAdobe PDF2864View/Open
    52020104.pdf63KbAdobe PDF2798View/Open
    52020105.pdf139KbAdobe PDF21528View/Open
    52020106.pdf195KbAdobe PDF23096View/Open
    52020107.pdf108KbAdobe PDF21280View/Open
    52020108.pdf116KbAdobe PDF21027View/Open
    52020109.pdf119KbAdobe PDF2953View/Open
    52020110.pdf66KbAdobe PDF21153View/Open
    52020111.pdf237KbAdobe PDF22064View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback