Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/31269
|
Title: | 美國未上市產險公司違約風險預測-以KMV公司之PFM模型為例 |
Authors: | 吳明遠 |
Contributors: | 蔡政憲 吳明遠 |
Keywords: | 信用風險 違約風險 美國產險公司 未上市公司 保險公司違約 PFM KMV Credit Risk Distance to default Private Firms Model |
Date: | 2005 |
Issue Date: | 2009-09-14 09:40:36 (UTC+8) |
Abstract: | 本文所使用信用風險評價模型為KMV公司用以衡量未上市公司之違約風險的PFM模型(Private Firms Model),主要的研究標的為美國未上市產險公司。此模型最主要的目的在求出公司的資產市值及資產市值報酬率波動度,並假設資產市值的變動遵循標準幾何布朗運動,因此在產險公司的資產市值小於某值後,該公司即算違約,其中資產市值平均與該值的距離稱為違約距離。而未上市產險公司缺少股價資訊,因此無法用一般的選擇權評價公式求得資產市值及資產市值報酬率波動度,所以先使用可以衡量上市產險公司資產市值的KMV模型(Moody`s KMV EDF□),找出上市公司的資產市值及資產市值報酬率波動度,再找出財務比率與兩者的關係,最後再將這層關係套用到未上市產險公司,如此可以求得未上市產險公司之資產市值及資產市值報酬率波動度。
本文經過實證研究過後,發現套用從1991年到2000年上市產險公司資料中找出的關係,代入2000年的未上市產險公司資料來預測公司於2001年是否違約,其結果發現準確度並不高;接著且再以違約距離和少部份財務變數做為預測模型,代入2001年資料,以預測2002年未上市產險公司的違約與否,其準確率也與先前相近,兩者的解釋能力約都只有六成到七成,雖然如此,還是可以發現違約距離在解釋能力上還是有一定之貢獻,如果可以將違約的樣本群數量□加,應該可以提升預測的準確度。 This theme is to measure the default probabilities of private P&C firms’ default in the U.S A. The model this paper used is called PFM (Private Firms Model). The asset value and asset volatility could be found by this model, but we must assume that the asset value will follow General Brownian Motion. After finding asset value and asset volatility, the next step is to find the default point. The distance between the expected asset value and the default point is DD (Distance to Default). However, the private P&C firms lack the relative stock information, so the Black-Scholes Option Pricing Model couldn’t be used. In order to find the relationship between the private firms’ asset value and asset volatility, we can use Moody`s KMV EDF□ (Expected Default Frequency) credit risk pricing model to measure the public P&C firms’ asset value and its volatility and find the relationship between those and firms’ financial ratios. Using the public firms’ relationship on private firms, the distance to default of the private firms can be found.
Through the empirical research, the correct rate of this model on the private P&C firms in the U.S.A is low. Besides, let DD and other financial ratios be the variables to forecast the next year, the correct rate is still low, but we can find that DD’s ability to explain the default probability is 60~70%. Therefore, we can say DD is still the useful variable and if the sample size of default firm can be increase, the correct rate may be promoted. |
Reference: | 中文 許士偉,利用PFM衡量我國未上市保險公司之違約風險,政治大學風險管理與保險研究所論文,民94年6月 黃仁德、陳淑郁,信用風險衡量,台灣金融財務季刊,第五輯,第三期,民93年9月,77-111。 陳侑宣,商業銀行如何使用信用風險值檢視授信政策,中央大學財務金融研究所碩士論文,民93年6月 周培如,銀行危機預警指標-KMV信用風險模型與財務指標之應用,政治大學經濟研究所碩士論文,民92年6月 王懷德,KMV模型於國內未上市、未上櫃之公開發行公司之研究,東吳大學會計研究所論文,民92年6月。 陳思翰,商業銀行如何利用Logit及KMV模型檢視授信政策,中央大學財務金融研究所碩士論文,民92年6月 林妙宜,公司信用風險之衡量,政治大學金融研究所碩士論文,民91年6月。 楊士昌,壽險業信用評等模式之研究-美國壽險公司之實證分析,政治大學風險管理與保險研究所論文,民91年6月 施佳華,產險業信用評等模式之研究-美國產險公司之實證分析,政治大學風險管理與保險研究所論文,民90年7月 英文 Andrea, S. and Z. Cristiano, 2004, Applying credit risk models to deposit insurance pricing: Empirical evidence, Journal of International Banking Regulation; Oct 2004, 6, 1. Anthony, S. and E. I. Altman, 1998, Credit risk measurement: Developments over the last 20 years, Journal of Banking & Finance 21, 1721-1742 Bohn, J. and N. Arora, and I. Korablev, 2005, Power and Level Validation of the EDF Credit Measure in the U.S. Market, Moody’s K.M.V, http://www.moodyskmv.com/research/files/wp/EDF_Validation_US.pdf Crosbie, P. J. and J. R. Bohn, 2001, Modeling Default Risk, KMV, http://www.defaultrisk.com/pp_model_35.htm Cummins, J. D., M. F. Grace, and R. D. Phillips., “Regulatory Solvency Predicition in Property-Liability Insurance: Risk-Based Capital, Audit Ratios, and Cash Flow Simulation”, Journal of Risk and Insurance, Vol. 66, No. 3(Sep., 1999), 417-458 Douglas, W. D., 2005, Examples of Overfitting Encountered When Building Private Firm Default Prediction Model, KMV http://www.moodyskmv.com/research/files/wp/Overfitting_Private_Firm_Models.pdf Friedman, H., and E. I. Altman, and D. Kao, 1985, Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress, Journal of Banking and Finance,1985,11(1):269-291. Nyberg, M., 2000, Benchmarking Deutsche Bundesbank’s Default Risk Model,the KMV Private Firm Model and Common Financial Ratios for German Corporations,KMV,http://www.bis.org/bcbs/events/oslo/liebigblo.pdf Roger, M. S. and E. K. Ahmet, and B. Jeff, and A. Jalal, 2003,Systematic And Idiosyncratic Risk In Middle-Market Default Prediction: A Study Of The Performance Of The RiskCale And PFM Model,KMV, http://www.moodyskmv.com/research/whitepaper/RiskCalc_PFM.pdf Stephen, K., 2003, Quantifying Credit Risk I: Default Prediction, Financial Analysts Journal, Jan/Feb 2003, 59, 1 Til, S., 2005, A Review of Recent Books on Credit Risk, Journal of APPLIED Econometrics, 20: 123–130 |
Description: | 碩士 國立政治大學 風險管理與保險研究所 9338017 94 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093358017 |
Data Type: | thesis |
Appears in Collections: | [風險管理與保險學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 219 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|