Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/31051
|
Title: | 以類神經網路輔助投資組合保險策略之研究 |
Authors: | 陳如玲 CHEN, JU-Ling |
Contributors: | 楊建民 Yang, Jiann-Min 陳如玲 CHEN, JU-Ling |
Keywords: | 類神經網路 投資組合保險 股價預測 績效衡量 Neural Network Portfolio Insurance Stock Price Prediction Performance measurement |
Date: | 2002 |
Issue Date: | 2009-09-14 09:09:40 (UTC+8) |
Abstract: | 面對市場未來趨勢的不確定性,投資者可以運用「投資組合保險」的概念,既能保障原本所投資的資產價值,又可以參與市場上漲時的獲利。本研究以類神經網路來研究證券市場的現象,一方面是已經有許多類神經網路在財務分析上的研究成果,另一方面是其具有學習以及預測的能力。
本研究首先探討投資組合保險策略,接著再比較投資組合保險策略在不同市況下的績效表現,隨後提出兩個階段的研究架構,經過設計與建置,以類神經網路模型進行對大盤未來漲跌型態的模擬預測,並利用預測的結果,輔助投資組合保險策略的決策,最後並將研究結果與大盤績效做綜合分析比較。
本研究的資料採取自台灣證券集中交易市場,期間為1991年1月3日至2002年12月31日,共3306個交易日,取大盤每日交易之歷史資料,經過處理後建立資料庫。類神經網路模型具有預測未來大盤漲跌區間的能力,在本研究所提出的漲跌區間劃分方式上,其預測正確率達到55%,預測的結果與實際漲跌完全相反的比例僅10%,其餘的35%為相鄰區間的預測誤差,其預測能力有助於投資組合保險策略的進行。
經過類神經網路模型輔助而進行的停損策略(SL),其年報酬率以及Sharpe Ratio,在大盤下跌的期間,兩個績效指標衡量結果皆為正值(21.125%>0以及980.493>0),充分發揮保險功能;而在大盤上漲的期間,兩個績效指標衡量結果皆優於大盤(46.544%>17.137%以及393.808>110.069)。
在年報酬率與Sharpe Ratio之間,本研究主張在探討投資組合保險時應著重風險的衡量,因此經過類神經網路模型輔助而進行的固定比例投資組合策略(CPPI),搭配槓桿乘數M值的調整,在大盤下跌的期間,其Sharpe Ratio依然可以維持正值,達到保險的效果,保護投資人的資產免於損失;而在大盤上漲的期間,其Sharpe Ratio更是高於大盤,可以享受資產價值提昇的獲利。 Facing the uncertainty of the market trend, an investor can use the concept of “ Portfolio Insurance ” to protect the value of his portfolio in bear market and earn the benefit from bull market. There have been many researches about applying Neural Network in the financial analysis and Neural Network has the abilities to learn and forecast.
This research evaluates the performances of the portfolio insurance strategies in different market trends. Then two-stage research structure has been designed and built. The first stage is forecasting the up-and-down trends of the equity market index by Neural network model. The second stage is using the forecasted results assisting the portfolio insurance decisions. Finally, the results of this research have been analyzed and compared with the benchmark.
The Neural Network is able to forecast the future up-and-down trends. The accurate rate is 55%. During the bear market(2002), the annual rate of return and Sharpe Ratio of the stop loss(SL) strategy which is assisted by NN are both positive(21.125%>0 and 980.493>0). During the bull market(2001), they both outperform the benchmark(46.544%>17.137% and 393.808>110.069).
The annual rate of return is more important than Sharpe Ratio because the risk measurement is an important factor in portfolio insurance strategy. Sharpe Ratios of the CPPI strategy which is assisted by NN outperform the benchmark in both above mentioned bear and bull market.
In short, the SL and CPPI strategy assisted by NN not only protect the value of the portfolio from losing in bear market but also gain profit in bull market, so they are the ideal portfolio insurance strategies. |
Reference: | 參考文獻 【中文部分】 【1】吳乙鴻,"應用類神經遺傳演算法建立電腦輔助設計模式之研究",國立成功大學,工業設計研究所碩士論文,民國八十九年七月。林丙輝,”投資組合保險”,華泰書局,民國84年7月。 【2】李進生等,”投資分析+Matlab應用”,銘傳大學財務金融研究中心編著,全華科技圖書公司,民國89年11月。 【3】邵光耀,"投資組合保險策略之績效-台灣股市之實證研究",國立台灣大學商學研究所碩士論文,民國80年6月。 【4】林筠,"投資組合保險與調整法則",台大管理論叢,民國81年5月。 【5】邱瑜明,"投資組合保險策略—在台灣股市之相關研究",國立政治大學金融學系碩士論文,89年6月。 【6】金國隆,"投資組合保險績效之研究",國立台灣大學商學研究所碩士論文,民國89年6月。 【7】周鵬程,”類神經網路入門-活用MATLAB”,全華科技圖書公司,民國91年9月。 【8】陳玫纓,"台灣退休基金資產配置與投資組合保險策略之研究",國立台灣大學財務金融研究所碩士論文,民國86年6月。 【9】張智星,”MATLAB程式設計與應用”,清蔚科技出版,民國91年11月。 【10】楊昌博,"投資組合保險策略在台灣股市之實證研究-七種保險策略之績效比較",國立成功大學企業管理研究所碩士論文,民國84年6月。 【11】楊朝成,"投資組合管理",國立台灣大學經濟研究所課程講義,民國91年2月。 【12】葉德霖,"投資組合保險策略與績效研究-以簡單排列原則(SRD)形成投資組合為例",輔仁大學金融研究所碩士論文,民國85年6月。 【13】劉懋楠,"投資組合保險策略之整合-台灣股票市場之實證研究",國立台灣大學商學研究所碩士論文,民國82年6月。 【14】蘇木春、張孝德,"機器學習類神經網路、模糊系統以及基因演算法則",全華科技出版,民國86年。 【15】蘿華強,”類神經網路-MATLAB的應用”,清蔚科技出版,民國90年9月。 【英文部分】 【16】Adeli, Hojjat & Hung, Shih–Lin,”Machine learning:Neural networks, Genetic algorithm , and Fuzzy system”, Wiley, 1995. 【17】Beighley, S., ”Return Patterns for Equity Indexes Hedged with Options”, Journal of Portfolio Management, Winter, pp.68-73. 【18】Bernstein, Peter L., “The Hidden Risks in Insuring Risks”, Journal of Portfolio Management, Summer 1994, pp.1. 【19】Bird, R., D., Dennis, and M. Tippett, ”A Stop Loss Approach to Portfolio Insurance”, Journal of Portfolio Management, Fall 1988, pp.35-40. 【20】Black, F and R. Jones, “Simplifying Portfolio Insurance”, Journal of Portfolio Management, Fall 1987, pp.48-51. 【21】Black, F and R. Jones, “Simplifying Portfolio Insurance for Corporate Pension Plans”, Journal of Portfolio Management, Summer 1988, pp.33-37. 【22】Black, F. and M. Scholes, “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy,1973, Vol.81, pp.637-654. 【23】Brennan, M.J. and E.S. Schwartz, ”Portfolio Insurance and Financial Market Equilibrium”, Journal of Business, Vol.62, No.4, pp.455-472. 【24】Clarke, Roger G. and Robert D. Arnott, ”The Cost of Portfolio Insurance: Tradeoffs and Choices”, Financial Analysts Journal, 1987, pp.35-47. 【25】Donald, L. Luskin, “Portfolio Insurance-A Guide to Dynamic Hedging”, John Wiley & Sons, Inc. 【26】Estep, Tony and Mark Kritzman, “TIPP:Insurance without Complexity,” Journal of Portfolio Management 14, summer 1988,pp.38-42 【27】Etzioni, S. Ethan,” Rebalance Disciplines for Portfolio Insurance”, Journal of Portfolio Management, 1986, pp.59-62. 【28】Garcia, C. B. and F. J. Gould, “A Note on the Measurement of Risk in a Portfolio”, Financial Analysts Journal, 1987,pp.61-69. 【29】Goldberg, D.E.,”Genetic and evolutionary algorithm come of age”, Communications of the ACM, 1994, Vol.37, No.3, pp.113 ~ 119. 【30】Holland, J.H.,”Adaptation in Natural and Artificial System: an introductory analysis with applications to biology, control, and artificial intelligence”, MIT press, 1992. 【31】Kuan, C. M. White, H. “Artificial neural networks: An econometric perspective”, Econometric Reviews, 13, 1994, pp1-91. 【32】Mitchell, Melanie,”An Introduction to Genetic Algorithm”, MIT Press, 1996. 【33】Perold, Andre F., “Constant Proportion Insurance,” Harvard Business School Working Paper, August 1986. 【34】Perold, A.F. and W.F. Sharpe, “Dynamic Strategies for Asset Allocation’, Financial Analysis Journal, January-February 1988, pp.16-27. 【35】Rubinstein, Mark, “Alternative Paths to Portfolio Insurance”, Financial Analysis Journal, July-August 1985, pp.42-52. 【36】Rubinstein, Mark and Hayne E. Leland, “Replicating Options withPositions in Stock and Cash”, Financial Analysts Journal, 1981, pp.63-71. 【37】Tang, Man,K.F.,K.S., & Kwong, S.,”Genetic Algorithms:concepts and applications”, IEEE Transactions On Industrial Electronics, Vol.43, No.5, pp.519 ~533, 1996.1997. |
Description: | 碩士 國立政治大學 資訊管理研究所 90356004 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0090356004 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 286 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|