Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/29582
|
Title: | 如何利用全國性民調推估地方民意?多層次貝式定理估計模型與分層加權的應用 |
Other Titles: | Using National Surveys to Estimate Local Public Opinions: An Application of Bayesian Multilevel Regression Model with Post- |
Authors: | 蔡佳泓 俞振華 Eric Chen-Hua Yu Chia-Hung Tsai |
Keywords: | 多層次貝式定理估計模型,事後分層加權,總和分佈,選舉預測,總統大選 Bayesian multilevel model,post-stratification,joint distribution,election forecast,presidential election |
Date: | 2006-06 |
Issue Date: | 2009-08-24 15:33:09 (UTC+8) |
Abstract: | 過去台灣學術性的民意調查研究主要關注的焦點在於推論全國性民意或全國性投票取向。受到樣本數的限制,研究者很難利用此類型的全國性民調資料推估地方民意(例如:以縣、市或鄉、鎮為單位的選民投票意向)。本研究透過多層次的貝式定理估計模型(Bayesian Multilevel Model),並以人口普查資料進行事後分層加權的方式(Post-stratification),發展出一套利用全國民調推估地方民意的模式。此模式主要包含以下兩個步驟:首先將全國人口依據基本特徵如性別、年齡、及教育程度等分成各個類型(Cell),並利用少數的全國性個體樣本輔以各區域(或稱次層級)總體特徵模擬出各區域中每一種人口類型的態度或意向。其次,配合人口普查資料我們可以得知各區域內其人口類型的總和分佈(Joint Distribution),並據以推估各區域或次層級的總體態度與意向。為驗證此模式的實用性,本研究進一步利用2004年總統大選前四週內約二千二百個民調樣本(其中僅有不及一千五百個樣本明白表明支持人選)及2000年台灣人口普查資料,成功地推估台灣本島地區二十三個縣市總統候選人的得票率。與各縣市實際的總統大選得票率相比,推估值和實際值的平均差距不到二個百分點。換言之,儘管各縣市在全國性民調資料中的平均樣本數不到一百個,利用本研究所發展的模式仍可準確地推估各縣市的總體民意。 Survey research in Taiwan almost always focuses on studying public opinion in the national level. Due to the potential small n problem for less populous sub-geographic units, scholars have not utilized national survey data to estimate public opinions in any local level (e.g., county, town, or village). To overcome this sample size limitation, we use a method combining the multilevel modeling approach with the population information for post-stratification. We apply it to a set of pre-election national surveys of the 2004 Taiwan presidential election (sample size<2200) and produce county-level estimates of vote choice. Specifically, we first construct a multilevel logistic regression model to estimate the mean of the vote choice variable given demographics and county of residence. Second, we post-stratify on all the variables in the model by using the joint population distribution of the demographic variables within each county. Comparing our estimates with the actual county-level election outcomes, the average absolute error is less than 2 percentage points. 過去台灣學術性的民意調查研究主要關注的焦點在於推論全國性民意或全國性投票取向。受到樣本數的限制,研究者很難利用此類型的全國性民調資料推估地方民意(例如:以縣、市或鄉、鎮為單位的選民投票意向)。本研究透過多層次的貝式定理估計模型(Bayesian Multilevel Model),並以人口普查資料進行事後分層加權的方式(Post-stratification),發展出一套利用全國民調推估地方民意的模式。此模式主要包含以下兩個步驟:首先將全國人口依據基本特徵如性別、年齡、及教育程度等分成各個類型(Cell),並利用少數的全國性個體樣本輔以各區域(或稱次層級)總體特徵模擬出各區域中每一種人口類型的態度或意向。其次,配合人口普查資料我們可以得知各區域內其人口類型的總和分佈(Joint Distribution),並據以推估各區域或次層級的總體態度與意向。為驗證此模式的實用性,本研究進一步利用2004年總統大選前四週內約二千二百個民調樣本(其中僅有不及一千五百個樣本明白表明支持人選)及2000年台灣人口普查資料,成功地推估台灣本島地區二十三個縣市總統候選人的得票率。與各縣市實際的總統大選得票率相比,推估值和實際值的平均差距不到二個百分點。換言之,儘管各縣市在全國性民調資料中的平均樣本數不到一百個,利用本研究所發展的模式仍可準確地推估各縣市的總體民意。
Survey research in Taiwan almost always focuses on studying public opinion in the national level. Due to the potential small n problem for less populous sub-geographic units, scholars have not utilized national survey data to estimate public opinions in any local level (e.g., county, town, or village). To overcome this sample size limitation, we use a method combining the multilevel modeling approach with the population information for post-stratification. We apply it to a set of pre-election national surveys of the 2004 Taiwan presidential election (sample size<2200) and produce county-level estimates of vote choice. Specifically, we first construct a multilevel logistic regression model to estimate the mean of the vote choice variable given demographics and county of residence. Second, we post-stratify on all the variables in the model by using the joint population distribution of the demographic variables within each county. Comparing our estimates with the actual county-level election outcomes, the average absolute error is less than 2 percentage points. |
Relation: | 臺灣政治學刊,10(1),5-38 |
Data Type: | article |
Appears in Collections: | [選舉研究中心] 期刊論文
|
Files in This Item:
File |
Size | Format | |
22.pdf | 504Kb | Adobe PDF2 | 1624 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|