English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118762/149826 (79%)
Visitors : 81191155      Online Users : 98
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/159712
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159712


    Title: Ramsey Theory中搜尋反例的演算法
    Algorithms for Finding Counterexamples in Ramsey Theory
    Authors: 葉益廷
    Yeh, Yi-Ting
    Contributors: 符麥克
    Fuchs, Michael
    葉益廷
    Yeh, Yi-Ting
    Keywords: 演算法
    拉姆齊理論
    拉姆齊定理
    拉姆齊數
    整數規劃
    機器學習
    Ramsey Theory
    Ramsey's theorem
    Ramsey number
    Algorithm
    Integer Programming
    Reinforcement Learning
    Date: 2025
    Issue Date: 2025-10-02 11:17:24 (UTC+8)
    Abstract: Ramsey theory 是一門發展已有百年的數學領域,其中與組合學、集合論、圖論及幾何學等多個數學領域都有其交集。然而,要理解這個領域,我們先來思考兩個問題。第一個問題是在一個聚會中要有多少人才能保證存在三個人互相都認識或者是三個人互相都不認識?第二個問題是是否存在一種演算法可以確切求出Ramsey number的數值?以上這兩道問題揭示了Ramsey theory的核心概念及繁雜性,構成了本論文研究的基石。本論文的大綱如下:我們首先回顧Ramsey theory的發展歷史,將其分成三個階段:Pre-Ramsey、Ramsey和Post-Ramsey。接著,我們討論Ramsey number,尤其關注上下界問題。最後,我們介紹兩種尋找Ramsey number反例的演算法:第一種是利用數學最佳化,另一種則是利用機器學習。
    Ramsey theory, a field of mathematics that has developed over the past century, intersects with various areas including combinatorics, set theory, graph theory, and geometry. To explain the field, we begin with two fundamental questions. First, how many people must be present at a party to guarantee the existence of a group of three individuals who are either all mutual acquaintances or all mutual strangers? Second, is there an algorithm capable of determining the exact value of a Ramsey number? These questions illustrate the essence and complexity of Ramsey theory and serve as the foundation for the research presented in this thesis. An outline of the thesis is as follows: we start with a historical overview of Ramsey theory, which can be categorized into three distinct periods: the Pre-Ramsey, Ramsey, and Post-Ramsey eras. Subsequently, we discuss Ramsey numbers, focusing on their upper and lower bounds. Finally, we present two algorithms: one based on mathematical optimization and the other on machine learning, both aimed at finding counterexamples to Ramsey numbers.
    Reference: [1] The Electronic Journal of Combinatorics. https://www.combinatorics.org/.
    [2] Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe. An exponential improvement for diagonal Ramsey. Annals of Mathematics, to appear in forthcoming issues, 2025.
    [3] David Conlon. A new upper bound for diagonal Ramsey numbers. Annals of Mathematics, second series, Vol. 170, No. 2, pages 941–960, September, 2009.
    [4] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Mathematica, Vol. 2, pages 463-470, 1935.
    [5] Ronald Lewis Graham, Joel Spencer, and Bruce Rothschild. Ramsey Theory. Wiley, 1990.
    [6] Parth Gupta, Ndiame Ndiaye, Sergey Norin, and Louis Wei. Optimizing the cgms upper bound on ramsey numbers. https://arxiv.org/pdf/2407.19026, 2024.
    [7] Ivars Peterson. Planes of Budapest. https://web.archive.org/web/20130627221430/http://www.maa.org/mathland/mathtrek_10_3_00.html, 2000.
    [8] Alexander Soifer. Ramsey Theory : Yesterday, Today and Tomorrow. Birkhäuser, 2010.
    [9] Steve Vott and Adam Lehavi. RamseyRL: A Framework for Intelligent Ramsey Number Counterexample Searching, 2023. https://arxiv.org/pdf/2308.11943.
    Description: 碩士
    國立政治大學
    應用數學系
    112751011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112751011
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101101.pdf397KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback