參考文獻: | [1] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang, A. Madotto and P. Fung, “Survey of Hallucination in Natural Language Generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1-38, 2023. [2] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang and X. Wu, “Unifying Large Language Models and Knowledge Graphs: A Roadmap,” IEEE Transactions on Knowledge and Data Engineering, vol. 36, no.7, pp. 3580-3599, July 2024. [3] L. Luo, Y. Li, G. Haffari, and S. Pan, “Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning,” International Conference on Learning Representations, Vienna, Austria, 2024. [4] Y. Wen, Z. Wang and J. Sun, “MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models,” 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 2024. [5] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody and S. Truitt, “From Local to Global: A Graph RAG Approach to Query-Focused Summarization,” arXiv preprint arXiv:2404.16130, 2024. [6] M. Sozio and A. Gionis, “The Community-Search Problem and How to Plan a Successful Cocktail Party,” 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’10), pp. 939–948, Washington, DC, USA, 2010. [7] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 2022. [8] T. Kojima, S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa, “Large Language Models are Zero-Shot Reasoners,” 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 2022. [9] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery and D. Zhou, “Self-Consistency Improves Chain of Thought Reasoning in Language Models,” arXiv preprint arXiv:2203.11171, 2023. [10] X. Xu, C. Tao, T. Shen, C. Xu, H. Xu, G. Long and J. Lou, “Re-Reading Improves Reasoning in Large Language Models,” 2024 Conference on Empirical Methods in Natural Language Processing, pp. 15549-15575, Miami, FL, USA, 2024. [11] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao and K. Narasimhan, “Tree of Thoughts: Deliberate Problem Solving with Large Language Models,” 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023. [12] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk and T. Hoefler, “Graph of Thoughts: Solving Elaborate Problems with Large Language Models,” 38th AAAI Conference on Artificial Intelligence, vol. 38, no. 16, Vancouver, Canada, 2024. [13] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, L. Ni, H. Shum and J. Guo, “Think-On-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph,” 12th International Conference on Learning Representations, Vienna, Austria, 2024. [14] B. Jiang, Y. Wang, Y. Luo, D. He, P. Cheng and L. Gao, “Reasoning on Efficient Knowledge Paths: Knowledge Graph Guides Large Language Model for Domain Question Answering,” 2024 IEEE International Conference on Knowledge Graph (ICKG), Abu Dhabi, United Arab Emirates, 2024. [15] M. Jia, J. Duan, Y. Song and J. Wang, “medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs,” arXiv preprint arXiv:2406.14326, 2024. [16] L. Wei, G. Xiao and M. Balazinska, “RACOON: An LLM-based Framework for Retrieval-Augmented Column Type Annotation with a Knowledge Graph,” arXiv preprint arXiv:2409.14556, 2024. [17] M. Dehghan, M. Alomrani, S. Bagga, D. Alfonso-Hermelo, K. Bibi, A. Ghaddar, Y. Zhang, X. Li, J. Hao, Q. Liu, J. Lin, B. Chen, P. Parthasarathi, M. Biparva and M. Rezagholizadeh, “EWEK-QA: Enhanced Web and Efficient Knowledge Graph Retrieval for Citation-based Question Answering Systems,” arXiv preprint arXiv:2406.10393, 2024. [18] W. Xie, X. Liang, Y. Liu, K. Ni, H. Cheng and Z. Hu, “WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs,” arXiv preprint arXiv:2408.07611, 2024. [19] V. Sanh, L. Debut, J. Chaumond and T. Wolf, “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter,” arXiv preprint arXiv:1910.01108, 2019. [20] Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang and Y. Zhang, “ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge,” Cureus, vol. 55, no. 6, pp. e40895, 2023. [21] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117, 1998. |