English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 81695540      Online Users : 85
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159398


    Title: 探討熱屏蔽塗層對量子位元溫度與讀取保真度的影響
    Evaluating the Effect of Shielding on Qubit Temperature and Readout Fidelity
    Authors: 呂函諭
    Lu, Han-Yu
    Contributors: 柯忠廷
    Ke, Chung-Ting
    呂函諭
    Lu, Han-Yu
    Keywords: 超導量子位元
    讀取保真度
    熱屏蔽塗層
    紅外光吸收塗層
    有效量子位元溫度
    Superconducting qubit
    Readout fidelity
    Thermal shield coating
    IR-absorbing coating
    Effective qubit temperature
    Date: 2025
    Issue Date: 2025-09-01 16:53:16 (UTC+8)
    Abstract: 在發展量子計算技術的過程中,提升讀取保真度(readoutfidelity)是關鍵目標之一。然而,環境中的紅外輻射會引發不必要的態躍遷,從而降低保真度。這類錯誤可分為兩種機率事件,分別為當量子位元被準備於基態卻被測得為激發態的機率P(1|0),以及準備於激發態卻被測得為基態的機率P(0|1)。

    在本論文中,我們在低溫系統之底部裝載(bottom-loading)的屏蔽內側塗上具吸收紅外能力的黑色塗層,比較其對量子位元讀出表現的影響。為進一步理解其背後物理機制,我們亦量測了有效量子位元溫度與相干時間(coherencetimes)隨環境溫度的變化。

    我們的研究結果顯示,有黑色塗層的情況下P(1|0)與P(0|1)較低,使讀出保真度由89%提升至93%,證實這種方式確實簡單且有效地降低紅外輻射對單一量子位元的影響,改善我們量測系統的低溫環境。
    Achieving high readout fidelity is one of the primary goals in the pursuit of practical quantum computing. However, environmental infrared radiation degrades this fidelity by causing unwanted state transitions. One source of the errors is quantified by P(1|0), the probability of measuring an excited state when a qubit is prepared in the ground state, and P(0|1), the probability of measuring a ground state when prepared in an excited state.

    In this thesis, we coated the inner surface of the shielding in a cryogenic bottom-loading system with an IR-absorbing black coating and compared its effect on the qubit readout performance. To further understand the underlying physics, we also studied the temperature dependence of the effective qubit temperature and coherence times.

    Our results show that with the black coating, P(1|0) and P(0|1) were lower, leading to an improved readout fidelity from 89% to 93%. This verifies that this method is indeed a simple and effective way to reduce the effect of infrared radiation on a single qubit, improving the cryogenic environment of our measurement system.
    Reference: [1] Antti P. Vepsäläinen, Amir H. Karamlou, John L. Orrell, et al. “Impact of ionizing radiation on superconducting qubit coherence.” Nature 584.7822 (Aug. 2020), pp. 551–556 (cit. p. 1).
    [2] C. Wang, Y. Y. Gao, I. M. Pop, et al. “Measurement and control of quasiparticle dynamics in a superconducting qubit.” Nature Communications 5.1 (Dec. 2014) (cit. pp. 1, 50).
    [3] Antonio D. Córcoles, Jerry M. Chow, Jay M. Gambetta, et al. “Protecting superconducting qubits from radiation.” Applied Physics Letters 99.18 (Oct. 2011) (cit. p. 1).
    [4] R. Barends, J. Wenner, M. Lenander, et al. “Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits.” Applied Physics Letters 99.11 (Sept. 2011) (cit. pp. 1, 28).
    [5] J. M. Kitzman, J. R. Lane, T. Stefanski, et al. “Vantablack Shielding of Superconducting Qubit Systems.” Journal of Low Temperature Physics 208.5–6 (Jan. 2022), pp. 467–474 (cit. p. 1).
    [6] Elizaveta I. Malevannaya, Viktor I. Polozov, Anton I. Ivanov, et al. An engineering guide to superconducting quantum circuit shielding. 2025 (cit. p. 1).
    [7] T. O. Klaassen, J. H. Blok, J. N. Hovenier, et al. “Title of the short paper, if available.” Proceedings of IEEE 10th International Conference on THz Electronics. Cambridge, UK: IEEE, 2002, p. 32 (cit. p. 1).
    [8] Erik Bründermann, Heinz-Wilhelm Hübers, and Maurice FitzGerald Kimmitt. Terahertz Techniques. Springer Berlin Heidelberg, 2012 (cit. p. 1).
    [9] D. S. Lvov, S. A. Lemziakov, E. Ankerhold, J. T. Peltonen, and J. P. Pekola. “Thermometry based on a superconducting qubit.” Physical Review Applied 23.5 (May 2025) (cit. pp. 1, 11, 49).
    [10] K. Serniak, M. Hays, G. de Lange, et al. “Hot Nonequilibrium Quasiparticles in Transmon Qubits.” Physical Review Letters 121.15 (Oct. 2018) (cit. p. 1).
    [11] X.Y. Jin, A. Kamal, A.P. Sears, et al. “Thermal and Residual Excited-State Population in a 3D Transmon Qubit.” Physical Review Letters 114.24 (June 2015) (cit. pp. 1, 11, 47, 48).
    [12] Jens Koch, Terri M. Yu, Jay Gambetta, et al. “Charge-insensitive qubit design derived from the Cooper pair box.” Physical Review A 76.4 (Oct. 2007) (cit. pp. 3, 19, 20).
    [13] Nicholas T. Bronn, Easwar Magesan, Nicholas A. Masluk, et al. “Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by a Combined Readout/Filter Technique.” IEEE Transactions on Applied Superconductivity 25.5 (Oct. 2015), pp. 1–10 (cit. p. 7).
    [14] R. K. Wangsness. “Sublattice effects in magnetic resonance.” Phys. Rev. 91 (1953), pp. 1085–1091 (cit. p. 10).
    [15] F. Bloch. “Generalized theory of relaxation.” Phys. Rev. 105 (1957), pp. 1206–1222 (cit. p. 10).
    [16] R. A. Redfield. “On the theory of relaxation processes.” IBM Journal of Research and Development 1 (1957), pp. 19–31 (cit. p. 10).
    [17] G. Ithier. “Manipulation, readout and analysis of the decoherence of a superconducting quantum bit.” Ph.D. thesis. Université Pierre et Marie Curie —Paris VI, 2005 (cit. p. 10).
    [18] G. Ithier, E. Collin, P. Joyez, et al. “Decoherence in a superconducting quantum bit circuit.” Phys. Rev. B 72 (2005), p. 134519 (cit. p. 10).
    [19] P. Krantz, M. Kjaergaard, F. Yan, et al. “A quantum engineer’s guide to superconducting qubits.” Applied Physics Reviews 6.2 (June 2019) (cit. pp. 11, 12, 19, 20, 22, 36, 50).
    [20] Hanhee Paik, D. I. Schuster, Lev S. Bishop, et al. “Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture.” Physical Review Letters 107.24 (Dec. 2011) (cit. pp. 11, 49, 50).
    [21] Kyle Serniak. “Nonequilibrium Quasiparticles in Superconducting Qubits.” Ph.D. dissertation. New Haven, CT: Yale University, 2019 (cit. pp. 11, 50).
    [22] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010 (cit. p. 13).
    [23] David Isaac Schuster. “Circuit Quantum Electrodynamics.” Ph.D. Thesis. Yale University, May 2007 (cit. pp. 16, 19, 21, 22).
    [24] M. Göppl, A. Fragner, M. Baur, et al. “Coplanar waveguide resonators for circuit quantum electrodynamics.” Journal of Applied Physics 104.11 (Dec. 2008) (cit. p. 16).
    [25] Daniel T. Sank. “Fast, Accurate State Measurement in Superconducting Qubits.” ProQuest ID: Sank_ucsb_0035D_12320. Merritt ID: ark:/13030/m5rc23bg. Ph.D. dissertation. University of California, Santa Barbara, 2014 (cit. p. 21).
    [26] Daniel D. Stancil and Gregory T. Byrd. Principles of Superconducting Quantum Computers. Wiley, Apr. 2022 (cit. p. 21).
    [27] David M. Pozar. Microwave Engineering. 4th. Hoboken, NJ: Wiley, 2011 (cit. p. 21).
    [28] Sadman Shanto, Andre Kuo, Clark Miyamoto, et al. “SQuADDS: A validated design database and simulation workflow for superconducting qubit design.” Quantum 8 (Sept. 2024), p. 1465 (cit. p. 21).
    [29] Zijun Chen. “Metrology of Quantum Control and Measurement in Superconducting Qubits.” PhD thesis. University of California, Santa Barbara, Jan. 2018 (cit. p. 22).
    [30] Bluefors Oy. User Manual: Bottom Loading Fast Sample Exchange. Version 2.0. Internal documentation provided to customers, not publicly available. Apr. 2021 (cit. pp. 28, 29).
    [31] Liangyu Chen, Hang-Xi Li, Yong Lu, et al. “Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier.” npj Quantum Information 9.1 (Mar. 2023) (cit. p. 35).
    [32] J. Wenner, Yi Yin, Erik Lucero, et al. “Excitation of Superconducting Qubits from Hot Nonequilibrium Quasiparticles.” Physical Review Letters 110.15 (Apr. 2013) (cit. pp. 48, 50).
    [33] Thomas Connolly, Pavel D. Kurilovich, Spencer Diamond, et al. “Coexistence of Nonequilibrium Density and Equilibrium Energy Distribution of Quasiparticles in a Superconducting Qubit.” Physical Review Letters 132.21 (May 2024) (cit. p. 50).
    [34] Leonid I. Glazman and Gianluigi Catelani. “Bogoliubov quasiparticles in superconducting qubits.” SciPost Phys. Lect. Notes (2021), p. 31 (cit. p. 50).
    [35] Pavel D. Kurilovich, Thomas Connolly, Charlotte G. L. Bøttcher, et al. High-frequency readout free from transmon multi-excitation resonances. 2025 (cit. p. 53).
    Description: 碩士
    國立政治大學
    應用物理研究所
    112755014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112755014
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    501401.pdf7791KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback