政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/159395
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118405/149442 (79%)
Visitors : 78285471      Online Users : 18
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159395


    Title: 高壓下超導氫化鈀(PdH)的研究及甲烷熱裂解的應用
    Investigations into the High-Pressure Superconductivity of PdH and the Applications of Methane Pyrolysis
    Authors: 周柏宇
    Chou, Po-Yu
    Contributors: 陳洋元
    Chen, Yang-Yuan
    周柏宇
    Chou, Po-Yu
    Keywords: 高壓超導
    氫化鈀
    甲烷熱裂解
    PdH
    Superconductivity
    Methane Pyrolysis
    Date: 2025
    Issue Date: 2025-09-01 16:52:36 (UTC+8)
    Abstract: 本碩士論文由「氫化鈀(PdH)超導量測與機制探討」和「甲烷熱裂解的應用-去碳燃氫技術」兩個研究主題組成

    第一部分:氫化鈀〖 PdH〗_x 超導量測與機制探討
    根據理論模擬顯示,〖 PdH〗_x 具有成為室溫超導體的潛力,而越高的氫含量能使超導轉變溫度T_c上升,然而目前尚未有詳細的實驗研究其特性。因此本研究期望利用高壓摻入更多氫,在實驗中藉由Diamond Anvil Cell (DAC)讓鈀與氫在高壓的環境下反應形成〖 PdH〗_x 樣品,探討壓力與 H_X 之間的關係。本研究結果顯示高壓下〖 PdH〗_x 晶體結構保持穩定,未發生相變或分解;晶格參數隨壓力近似線性減少,未出現異常體積變化或結構轉變跡象。證實利用高壓手段在室溫下製備高氫濃度〖 PdH〗_x 的可行性,同時支持氫化鈀晶格常數隨氫濃度和壓力變化的文獻資料。

    第二部分:甲烷熱裂解的應用-去碳燃氫技術
    因應全球氣候變遷與能源轉型的挑戰,發展低碳甚至零碳排的替代能源技術成為各國能源政策的核心。「去碳燃氫技術」是一項兼顧減碳與能源利用效率的新興方案,其核心概念為在不直接排放二氧化碳的情況下,由甲烷等碳氫化合物中裂解出氫氣,並將碳以固態形式分離,進而作為潔淨能源應用。

    在實驗設計方面,本研究建構一套高溫甲烷裂解系統,並比較流量、溫度、壓力對裂解效率之影響;採用 FID(火焰離子偵測器)進行氫氣純度與殘餘氣體之分析,並結合材料觀察與結構分析技術研究碳產物之特性。結果顯示,裂解效率受反應溫度、壓力與氣體流速顯著影響,且生成的碳材料具備一定的應用價值。在能源效率評估方面,去碳燃氫技術展現出相較傳統重整法更具潛力的能效表現。
    Part Ⅰ – Investigations into the High-Pressure Superconductivity of PdH:
    First-principles calculations predict that raising the hydrogen content in〖 PdH〗_x can increase the superconducting transition temperature T_c toward room temperature, yet experimental confirmation remains limited. To access higher hydrogen stoichiometry, we reacted palladium with hydrogen inside a diamond-anvil cell (DAC) at multi-gigapascal pressures. In-situ X-ray diffraction reveals that the face-centered-cubic lattice of〖 PdH〗_x stays structurally intact; its lattice constant decreases almost linearly with pressure and shows no sign of phase transition or decomposition. These results demonstrate the feasibility of preparing high-hydrogen 〖 PdH〗_x at ambient temperature through high-pressure techniques and corroborate literature trends relating lattice expansion to hydrogen concentration and pressure. This work provides a structural basis for future studies of pressure-enhanced superconductivity in palladium hydrides.

    Part ⅠI – the Applications of Methane Pyrolysis:
    Amid global efforts to mitigate climate change and transform energy systems, low- and zero-carbon technologies are strategic priorities. Methane thermal cracking offers a promising route: hydrogen is liberated without direct 〖CO〗_2 release, while carbon is isolated as a stable solid usable in value-added applications. We built a high-temperature (≤ 1500 °C) reactor to systematically examine how flow rate, temperature, and pressure influence methane conversion. A flame-ionization detector (FID) quantified hydrogen purity and residual gases, and complementary microscopy and diffraction characterized the resulting carbon. Conversion efficiency rose markedly with elevated temperature, optimized flow, and moderate pressure, and the carbon products exhibited morphologies suitable for conductive fillers or battery additives. Energy-efficiency analysis indicates that methane cracking can outperform conventional steam reforming—especially when 〖CO〗_2 capture costs are considered—while simultaneously supplying high-purity hydrogen and marketable carbon materials.
    Reference: [1] Syed, H. M., Gould, T. J., Webb, C. J., & Gray, E. MacA. (2016). Superconductivity in palladium hydride and deuteride at 52–61 K. arXiv e-print, 1608.01774. https://arxiv.org/abs/1608.01774
    [2] Meissner effect. (n.d.). In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Meissner_effect
    [3] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108(5), 1175–1204. https://doi.org/10.1103/PhysRev.108.1175
    [4] Kawae, T., Inagaki, Y., Wen, S., Hirota, S., Itou, D., & Kimura, T. (2020). Superconductivity in palladium hydride systems. Journal of the Physical Society of Japan, 89(5), 051004-1–051004-10. https://doi.org/10.7566/JPSJ.89.051004
    [5] Echemi Community Editorial Team (2022). Room temperature superconductivity: Breakthrough or scientific fraud? Echemi Science Community. https://www.echemi.com/community/room-temperature-superconductivity-breakthrough-or-scientific-fraud_mjart2204123740_936.html
    [6] Garisto, D. (2024). Exclusive: Official investigation reveals how superconductivity physicist faked blockbuster results. Nature, 628, 481–483. https://doi.org/10.1038/d41586-024-00976-y
    [7] Palladium hydride. (n.d.). In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Palladium_hydride
    [8] Tripodi, P., Di Gioacchino, D., Borelli, R., & Vinko, J. D. (2003). Possibility of high temperature superconducting phases in PdH. Physica C: Superconductivity, 388–389, 571–572. https://doi.org/10.1016/S0921-4534(02)02745-4
    [9] Setayandeh, S. S., Webb, C. J., & Gray, E. MacA. (2020). Electron and phonon band structures of palladium and palladium hydride: A review. Progress in Solid State Chemistry, 60, 100285. https://doi.org/10.1016/j.progsolidstchem.2020.100285
    [10] Xia, X. L., Wei, Y. K., Xu, G., Yuan, J. N., Zhu, J. M., & Wei, D. Q. (2024). Chemically tuning stability and superconductivity of Pd–H compounds: A routine to high temperature superconductivity under modest pressures. Journal of Applied Physics, 136(16), 165901. https://doi.org/10.1063/5.0231618
    [11] Anderson, P. W. (1959). Theory of dirty superconductors. Journal of Physics and Chemistry of Solids, 11, 26–30.
    [12] Geballe, Z. M., Somayazulu, M., Armanet, N., Mishra, A. K., Ahart, M., Hemley, R. J., et al. (2021). High-pressure synthesis and thermodynamic stability of PdH₁±ε up to 8 GPa. Physical Review B, 103(2), 024515. https://doi.org/10.1103/PhysRevB.103.024515
    [13] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Microscopic theory of superconductivity I. Physical Review, 106(1), 162–164. https://doi.org/10.1103/PhysRev.106.162
    [14] Tsuppayakorn-aek, P. et al. (2023). Superconducting state of the van der Waals layered PdH₂ structure at high pressure. International Journal of Hydrogen Energy (in press). https://doi.org/10.1016/j.ijhydene.2022.12.312
    [15] Wang, Y., Li, H., Zhou, X., & Chen, Z. (2024). Facile synthesis of palladium hydride nanoparticles and their hydrogen storage behavior. Journal of Molecular Liquids, 399, 124012. https://doi.org/10.1016/j.molliq.2024.124012
    [16] McMillan, W. L. (1968). Transition temperature of strong-coupled superconductors. Physical Review, 167, 331. Allen, P. B., & Dynes, R. C. (1975). Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B, 12, 905.
    [17] Bednorz, J. G., & Müller, K. A. (1986). Possible high T<sub>c</sub> superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B, 64, 189.
    [18] Gao, L., et al. (1994). Superconductivity up to 164 K in HgBa₂Ca₂Cu₃O(8+δ) under 30 GPa. Physical Review B, 50, 4260.
    [19] Drozdov, A. P., et al. (2015). Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73–76.
    [20] Drozdov, A. P., et al. (2019). Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528–531.
    [21] Somayazulu, M., et al. (2019). Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Physical Review Letters, 122, 027001.
    [22] Uglietti, D. (2016). A review of high temperature superconducting cables for electric power systems. Superconductor Science and Technology, 29, 093001.
    [23] Devoret, M. H., & Schoelkopf, R. J. (2013). Superconducting circuits for quantum information: An outlook. Science, 339, 1169–1174.
    [24] Clarke, J., & Braginski, A. I. (Eds.). (2004). The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems. Wiley-VCH.
    [25] Wu, M. K., et al. (1987). Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Physical Review Letters, 58, 908–910.
    [26] Gray, E. M., & Webb, C. J. (2023). Palladium hydrides as ambient-pressure benchmarks for hydride superconductivity. Materials Advances, 4, 1234–1250.
    [27] Eremets, M. I., Troyan, I. A., & Drozdov, A. P. (2016). Low temperature phase diagram of hydrogen at pressures up to 380 GPa: a possible metallic phase at 360 GPa and 200 K. arXiv:1601.04479. https://doi.org/10.48550/arXiv.1601.04479
    [28] Skoskiewicz, T. (1972). Superconductivity in the palladium–hydrogen and palladium–nickel–hydrogen systems. physica status solidi (a), 11, K123–K126.
    [29] Krahn, D. R., Henry, R. L., Tanner, D. B., & Wigen, P. E. (1978). The critical fields of superconducting palladium hydride. physica status solidi (a), 46, 209–216.
    [30] Schirber, J. E. (1973). Pressure dependence of the superconducting transition temperatures of PdH and PdD. [Los Alamos National Laboratory report; OSTI Record 4327778].
    [31] Schirber, J. E., & Northrup, C. J. M. (1974). Concentration dependence of the superconducting transition temperature in PdHₓ and PdDₓ. Physical Review B, 10, 3818–3823.
    [32] Stritzker, B. (1974). High superconducting transition temperatures in the palladium–noble-metal–hydrogen system. Zeitschrift für Physik, 268, 261–270.

    [1] International Energy Agency (IEA). (2024). Electricity 2024. Paris: IEA. https://www.iea.org/reports/electricity-2024
    [2] International Renewable Energy Agency (IRENA). (2025, March). 可再生能源裝置容量年度增長創歷史新高 [Record-Breaking Annual Growth in Renewable Power Capacity] [Press release]. https://www.irena.org/News/pressreleases/2025/Mar/Record-Breaking-Annual-Growth-in-Renewable-Power-Capacity-ZH
    [3] 行政院能源及減碳辦公室 (2024). 能源轉型白皮書. 臺北: 行政院能源及減碳辦公室. https://ebp.ndc.gov.tw/wp-content/uploads/2024/04/能源轉型白皮書(核定本).pdf
    [4] International Renewable Energy Agency (IRENA). (2024). Renewable Power Generation Costs in 2023. Abu Dhabi: IRENA. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Sep/IRENA_Renewable_power_generation_costs_in_2023.pdf
    [5] International Energy Agency (IEA). (2024). Annual investment in clean energy by scenario, 2030 [Data set]. https://www.iea.org/data-and-statistics/charts/annual-investment-in-clean-energy-by-scenario-2030
    [6] International Energy Agency (IEA). (2024). Global Hydrogen Review 2024: Hydrogen production. Paris: IEA. https://www.iea.org/reports/global-hydrogen-review-2024/hydrogen-production
    [7] U.S. Department of Energy. (2024). Regional Clean Hydrogen Hubs Funding Opportunity (DE-FOA-0002794). Washington, DC: Office of Clean Energy Demonstrations. https://www.energy.gov/oced/regional-clean-hydrogen-hubs
    [8] European Commission. (2025, April 15). Commission approves a €400 million Spanish State aid scheme to support renewable hydrogen production [Press release]. Brussels. https://ec.europa.eu/commission/presscorner/detail/en/ip_25_1059
    [9] 國家發展委員會 (2024年12月). 2050 淨零排放行動方案. 臺北: 國家發展委員會. https://www.ndc.gov.tw/Content_List.aspx?n=733396F648BE2845
    [10] U.S. Department of Energy. (2023). Hydrogen production: Natural gas reforming. Washington, DC: Office of Fossil Energy & Carbon Management. https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming
    [11] International Renewable Energy Agency (IRENA) & International Labour Organization (ILO). (2024). Renewable Energy and Jobs – Annual Review 2024. Abu Dhabi: IRENA. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Oct/IRENA_Renewable_energy_and_jobs_2024.pdf
    [12] Financial Times. (2023, October 11). Global jobs market shaken by green transition. https://www.ft.com/content/a15badc1-93ba-4a3a-b763-66b183d93f67
    [13] International Renewable Energy Agency (IRENA). (2022, November). Could the energy transition benefit Africa’s economies? Abu Dhabi: IRENA. https://www.irena.org/News/expertinsights/2022/Nov/Could-the-Energy-Transition-Benefit-Africas-Economies
    [14] International Renewable Energy Agency (IRENA). (2020). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 °C Climate Goal. Abu Dhabi: IRENA. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
    [15] Monolith Corp. (n.d.). Monolith receives conditional approval for a $1.04 billion U.S. DOE loan [Press release]. Lincoln, NE. https://monolith-corp.com/news/monolith-receives-conditional-approval-for-a-one-billion-dollar-us-department-of-energy-loan
    [16] CSIRO HyResource. (n.d.). Hazer Commercial Demonstration Plant. https://research.csiro.au/hyresource/hazer-commercial-demonstration-plant/
    [17] Chemical Engineering Magazine. (n.d.). Commercial progress on turquoise hydrogen. https://www.chemengonline.com/fullscreen/commercial-progress-on-turquoise-hydrogen/
    [18] Abdeljawad, M., Chen, J., & Liu, Z. (2023). Catalytic methane pyrolysis for low-carbon hydrogen: Recent advances and challenges. Metals, 13(7), 1310.
    [19] Trivedi, M., Kumar, R., & Tran, T. D. (2023). State-of-the-art reactors for methane pyrolysis toward turquoise hydrogen. Renewable and Sustainable Energy Reviews, 181, 136403.
    [20] Lux Research Inc. (n.d.). Technology landscape & key players in methane pyrolysis. https://luxresearchinc.com/blog/technology-landscape-key-players-in-methane-pyrolysis
    [21] DigitalRefining. (n.d.). Turquoise-hydrogen production by methane pyrolysis. https://www.digitalrefining.com/article/1002720/turquoise-hydrogen-production-by-methane-pyrolysis
    [22] Chemical Engineering Magazine. (n.d.). Hydrogen production via methane pyrolysis: An overview of turquoise H₂. https://www.chemengonline.com/fullscreen/hydrogen-production-via-methane-pyrolysis-an-overview-of-turquoise-h2/
    [23] Li, Y., Zhang, P., & Chen, Q. (2024). Detailed kinetic study on PAH formation pathways during methane pyrolysis. Combustion and Flame, 260, 112995.
    [24] Mousavi, M., Ebrahimi, S., & Farazi, R. (2024). Catalytic decomposition of methane into hydrogen and carbon flakes: Including soot-growth kinetics. International Journal of Hydrogen Energy, 49(12), 5421–5435.
    [25] Wang, J., Liu, H., & Zhao, X. (2024). Al₂O₃-supported bimetallic catalysts for low-temperature methane pyrolysis toward graphene production. Journal of Inorganic Materials, 39(4), 445–456.
    [26] Chu, J. (2023, July 31). MIT engineers create an energy-storing supercapacitor from ancient materials. MIT News. https://news.mit.edu/2023/mit-engineers-create-supercapacitor-ancient-materials-0731
    [27] Dash, P. C., Sarkar, B., & Ghosh, M. (2020). Catalytic pyrolysis of methane to value-added carbon and hydrogen. Reaction Chemistry & Engineering, 5.
    [28] Graphene Flagship. (n.d.). Materials of the Future: Graphene and Concrete. https://graphene-flagship.eu/materials/news/materials-of-the-future-graphene-and-concrete
    [29] Hu, T., Song, Y., Zhang, X., Lin, S., Liu, P., Zheng, C., & Gao, X. (2025). A mini review for hydrogen production routes toward carbon neutrality. Propulsion and Energy, 1(1), 1–15. https://doi.org/10.1007/s44270-024-00004-4
    [30] Odenweller, A., & Ueckerdt, F. (2025). The green hydrogen ambition and implementation gap. Nature Energy, 10, 110–123. https://doi.org/10.1038/s41560-024-01684-7
    [31] Yang, X., Nielsen, C. P., Song, S., & McElroy, M. B. (2022). Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nature Energy, 7, 955–965. https://doi.org/10.1038/s41560-022-01114-6
    [32] Johnson, N., Liebreich, M., Kammen, D. M., Ekins, P., McKenna, R., & Staffell, I. (2025). Realistic roles for hydrogen in the future energy transition. Nature Reviews: Clean Technology, 1, (pages pending). https://doi.org/10.1038/s44359-025-00050-4
    [33] Patlolla, S. R., Katsu, K., Sharafian, A., Wei, K., & Mérida, W. (2023). A review of methane pyrolysis technologies for hydrogen production. Renewable and Sustainable Energy Reviews, 181, 113323. https://doi.org/10.1016/j.rser.2023.113323
    [34] Moghaddam, A. L., Hejazi, S., Fattahi, M., Kibria, M. G., Thomson, M. J., AlEisa, R., & Khan, M. A. (2025). Methane pyrolysis for hydrogen production: navigating the path to a net-zero future. Energy & Environmental Science, 18, 2747–2790. https://doi.org/10.1039/D4EE06191H
    [35] International Energy Agency (IEA). (2024). Coal 2024 – Analysis. Paris: IEA. https://www.iea.org/reports/coal-2024-analysis
    [36] Lazard. (2023). Levelized Cost of Energy+ (Version 17.0). New York: Lazard. https://www.lazard.com/perspective/levelized-cost-of-energy
    [37] Global Wind Energy Council (GWEC). (2024). Global Wind Report 2024. Brussels: GWEC. https://gwec.net/global-wind-report-2024
    [38] North American Electric Reliability Corporation (NERC). (2024). State of Reliability 2024. Atlanta: NERC. https://www.nerc.com/pa/RAPA/PA/Pages/default.aspx
    [39] IEA Photovoltaic Power Systems Programme (IEA PVPS). (2024). Snapshot of Global PV Markets 2024. Paris: IEA PVPS. https://iea-pvps.org/key-topics/snapshot-of-global-pv-markets-2024
    [40] IEA Bioenergy Technology Collaboration Programme (IEA Bioenergy). (2024). Bioenergy Technology Briefs 2024. Paris: IEA Bioenergy. https://www.ieabioenergy.com/iea-publications
    [41]Regula, M., & Combs, Z. (2021, September 14). Improving the performance of lithium ion batteries with conductive carbons [Blog post]. Birla Carbon. https://www.birlacarbon.com/improving-the-performance-of-lithium-ion-batteries-with-conductive-carbons/
    [42]Ji, Y., Palmer, C., Foley, E. E., Giovine, R., Yoshida, E., McFarland, E., & Clément, R. J. (2022). Valorizing the carbon byproduct of methane pyrolysis in batteries [Preprint]. arXiv. https://arxiv.org/abs/2208.06994
    [43]Anhui Dery Material Science Co., Ltd. (2024, August 20). The role of carbon black in the tire industry. https://www.dr-carbonblack.com/the-role-of-carbon-black-in-the-tire-industry/
    [12]CFI Carbon Products. (2024, May 23). The impact of carbon black for plastics on durability. https://www.cficarbonproducts.com/sb/the-impact-of-carbon-black-for-plastics-on-durability/
    [45]Flick, D., Scheiff, F., Heindl, M., Wissemeier, A., & Bode, A. (2022). Use of carbon black for soil conditioning (China Patent No. CN114828620A). https://patents.google.com/patent/CN114828620A
    [46]Greenwood, A. (2022, January 5). Insight: US Monolith to expand world’s largest methane pyrolysis plant. ICIS. https://www.icis.com/explore/resources/news/2022/01/05/10722011/insight-us-monolith-to-expand-world-s-largest-methane-pyrolysis-plant/
    [47]U.S. Department of Energy, Advanced Research Projects Agency–Energy. (2021). ARPA-E FY 2019 Annual Report: Report to Congress. https://arpa-e.energy.gov/sites/default/files/migrated/ARPA-E%20FY19%20Annual%20Report%20to%20Congress_FINAL.pdf
    [48]Wallace, F. (2025, February 5). Why synthetic graphite from FortisBC’s hydrogen process could transform batteries and steelmaking. Hydrogen Fuel News. https://www.hydrogenfuelnews.com/synthetic-graphite-hydrogen/8569530/
    Description: 碩士
    國立政治大學
    應用物理研究所
    112755006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112755006
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Applied Physics] Theses

    Files in This Item:

    File Description SizeFormat
    500601.pdf5852KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback