English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118252/149288 (79%)
Visitors : 75327448      Online Users : 138
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/159273
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159273


    Title: 工作者在組織引進人工智慧中之動態適應歷程
    Workers' Adaptation to Organizational AI Adoption – A Qualitative Study
    Authors: 陳宣齊
    Chen, Hsuan-Chi
    Contributors: 郭建志
    Kuo, Chien-chih
    陳宣齊
    Chen, Hsuan-Chi
    Keywords: 適應
    AI 引進
    評估
    組織
    工作者
    Adaptation
    AI Adoption
    Appraisal
    Organization
    Worker
    Date: 2025
    Issue Date: 2025-09-01 16:13:05 (UTC+8)
    Abstract: 隨著人工智慧(AI)更進一步的發展以及更多潛在應用的來臨(包含生成式 AI),組織正在快速引進各式各樣的 AI 工具與系統,進而引發職場中的一系列變化。本研究首先透過兩個觀點去概念化組織引進 AI 的過程:「起初為技術進步的產物,隨後形成一種組織轉型」,並探索在這樣的觀點下,組織中的工作者如何評估並適應 AI 的引進和其所帶來的影響,以及組織在 AI 引進過程中可依循以協助其工作者進行適應的方向。為達成此目的,本研究根據壓力與因應的互動理論(Transactional Theory of Stress and Coping)、工作要求—資源理論(Job Demands-Resources Theory)和社會技術系統理論(Socio-Technical System Theory)提出了一系列的研究問題,涉及工作者對特定變化的評估(RQ1a、1b、2a、2b)與適應(RQ1、2),以及組織為其適應所須付出的努力(RQ3-1、3-2)。為回應這些研究問題,本研究透過立意取樣與方便取樣招募並選出了 13 位在其組織中正經歷由上而下之 AI 引進的研究參與者,並向他們進行了一系列的半結構式訪談,且透過搭配框架法(Framework Method)的理論驅動主題分析法(theory-driven thematic analysis),分析了所有的訪談資料,隨後為每個研究問題生成了一系列的主題類別:「因對 AI 不滿而無動於衷」(Unmoved with AI Dissatisfaction)與「因體認 AI 而謹慎看待」(Careful with AI Recognition)對應 RQ1a/b;「不設限學習取向」(Limitless Learning Orientation)、「盈缺 AI 取向」(Waning-Waxing AI Orientation)與「人類優越取向」(Human Superiority Orientation)對應 RQ1;「共同學習管理」(Co-Learning Management)對應 RQ3-1;「因組織不適配而不堪重負」(Overwhelmed with Organizational Misalignment)與「因組織契合而受益」(Benefitted with Organizational Alignment)對應 RQ2a/b;「韌性角色取向」(Resilient Role Orientation)、「AI 合作取向」(AI Cooperation Orientation)與「無限職涯取向」(Unlimited Career Orientation)對應 RQ2;「無縫導入」(Seamless Deployment)與「透明一致」(Transparent Alignment)對應 RQ3-2。最後,本研究介紹了其在理論與實務上的貢獻,以及未來研究可進行的方向。
    With the advent of more advancement and potential application of artificial intelligence (AI) including generative AI, organizations are rapidly adopting a variety of AI tools and systems, in turn causing a series of changes in the workplace. The present research first utilizes two perspectives to conceptualize organizational AI adoption: first as a product of technological advancement and subsequently as a kind of organizational transformation, and then explores that under these two perspectives, how workers in organizations would appraise and adapt to AI adoption and respective arising changes, and what direction organization could follow to facilitate their workers’ adaptation. Following this aim, the present research has developed a series of research questions regarding workers’ appraisal (RQ1a, 1b, 2a, 2b) and adaptation (RQ1, 2) towards specific changes, and their needed organizations’ effort for their adaptation (RQ3-1, 3-2) based on Transactional Theory of Stress and Coping, Job Demands-Resources Theory, as well as Socio-Technical System Theory. To respond to those research questions, the present research has recruited and selected 13 participants with current experience of a top-down AI adoption in their organizations via purposive as well as convenience sampling, conducted a series of semi-structured interviews with them, and analyzed all the interview data via a theory-driven thematic analysis with Framework Method, later generating a series of thematic categories for each research question: Unmoved with AI Dissatisfaction and Careful with AI Recognition for RQ1a/1b; Limitless Learning Orientation, Waning-Waxing AI Orientation, and Human Superiority Orientation for RQ1; Co-Learning Management for RQ3-1; Overwhelmed with Organizational Misalignment and Benefitted with Organizational Alignment for RQ2a/b; Resilient Role Orientation, AI Cooperation Orientation, and Unlimited Career Orientation for RQ2; Seamless Deployment and Transparent Alignment for RQ3-2. Finally, the theoretical contribution and practical implication of the present research, as well as the direction for future research are introduced.
    Reference: Abid, N., Marchesani, F., Ceci, F., Masciarelli, F., & Ahmad, F. (2022). Cities trajectories in the digital era: Exploring the impact of technological advancement and institutional quality on environmental and social sustainability. Journal of Cleaner Production, 377, 134378. https://doi.org/10.1016/j.jclepro.2022.134378
    Acemoglu, D. (1998). Why do new technologies complement skills? Directed technical change and wage inequality. The Quarterly Journal of Economics, 113(4), 1055-1089. https://doi.org/10.1162/003355398555838
    Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7-72. https://doi.org/10.1257/0022051026976
    Albrecht, S. L., Bakker, A. B., Gruman, J. A., Macey, W. H., & Saks, A. M. (2015). Employee engagement, human resource management practices and competitive advantage: An integrated approach. Journal of Organizational Effectiveness: People and Performance, 2(1), 7-35. https://doi.org/10.1108/JOEPP-08-2014-0042
    Alekseeva, L., Azar, J., Gine, M., Samila, S., & Taska, B. (2021). The demand for AI skills in the labor market. Labour Economics, 71, 102002. https://doi.org/10.1016/j.labeco.2021.102002
    Alibasic, A., Upadhyay, H., Simsekler, M. C. E., Kurfess, T., Woon, W. L., & Omar, M. A. (2022). Evaluation of the trends in jobs and skill-sets using data analytics: A case study. Journal of Big Data, 9(1), 32. http://dx.doi.org/10.1186/s40537-022-00576-5
    Allen, W. C. (2006). Overview and evolution of the ADDIE training system. Advances in Developing Human Resources, 8(4), 430-441. https://doi.org/10.1177/1523422306292942
    Appelbaum, S. H. (1997). Socio‐technical systems theory: an intervention strategy for organizational development. Management Decision, 35(6), 452-463. http://dx.doi.org/10.1108/00251749710173823
    Astvik, W., & Melin, M. (2013). Coping with the imbalance between job demands and resources: A study of different coping patterns and implications for health and quality in human service work. Journal of Social Work, 13(4), 337-360. http://dx.doi.org/10.1177/1468017311434682
    Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3-30. http://dx.doi.org/10.1257/jep.29.3.3
    Aydın, Ö., & Karaarslan, E. (2023). Is ChatGPT leading generative AI? What is beyond expectations? Academic Platform Journal of Engineering and Smart Systems, 11(3), 118-134. https://doi.org/10.21541/apjess.1293702
    Bakker, A. B., & Demerouti, E. (2007). The job demands‐resources model: State of the art. Journal of Managerial Psychology, 22(3), 309-328. https://doi.org/10.1108/02683940710733115
    Bakker, A. B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 22(3), 273. http://dx.doi.org/10.1037/ocp0000056
    Bakker, A. B., & Demerouti, E. (2018). Multiple levels in job demands-resources theory: Implications for employee well-being and performance. In Handbook of well-being. Noba Scholar.
    Bakker, A. B., Demerouti, E., & Verbeke, W. (2004). Using the job demands‐resources model to predict burnout and performance. Human Resource Management: Published in Cooperation with the School of Business Administration, The University of Michigan and in alliance with the Society of Human Resources Management, 43(1), 83-104. https://doi.org/10.1002/hrm.20004
    Bakker, A. B., Demerouti, E., & Sanz-Vergel, A. (2023). Job demands–resources theory: Ten years later. Annual review of organizational psychology and organizational behavior, 10(1), 25-53. https://doi.org/10.1146/annurev-orgpsych-120920-053933
    Bakker, A. B., Tims, M., & Derks, D. (2012). Proactive personality and job performance: The role of job crafting and work engagement. Human Relations, 65(10), 1359-1378. https://doi.org/10.1177/0018726712453471
    Baklaga, L. (2024). The role of AI in shaping our future: Super-exponential growth, galactic civilization, and doom. Journal of Computer Science and Technology Studies, 6(4), 112-130. http://dx.doi.org/10.32996/jcsts.2024.6.4.14
    Berjot, S., & Gillet, N. (2011). Stress and coping with discrimination and stigmatization. Frontiers in Psychology, 2, 33. https://doi.org/10.3389/fpsyg.2011.00033
    Besson, P., & Rowe, F. (2012). Strategizing information systems-enabled organizational transformation: A transdisciplinary review and new directions. The Journal of Strategic Information Systems, 21(2), 103-124. https://doi.org/10.1016/j.jsis.2012.05.001
    Bhargava, A., Bester, M., & Bolton, L. (2021). Employees’ perceptions of the implementation of robotics, artificial intelligence, and automation (RAIA) on job satisfaction, job security, and employability. Journal of Technology in Behavioral Science, 6(1), 106-113. https://link.springer.com/article/10.1007/s41347-020-00153-8
    Bowen, D. E. (1986). Managing customers as human resources in service organizations. Human Resource Management, 25(3), 371-383. http://dx.doi.org/10.1002/hrm.3930250304
    Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
    Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and be (com) ing a knowing researcher. International Journal of Transgender Health, 24(1), 1-6. https://doi.org/10.1080/26895269.2022.2129597
    Braun, V., Clarke, V., Hayfield, N., & Terry, G. (2019). Thematic analysis. In Handbook of research methods in health social sciences (pp. 843-860). Springer.
    Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.
    Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (No. w31161). National Bureau of Economic Research. https://doi.org/10.3386/w31161
    Burström, T., Parida, V., Lahti, T., & Wincent, J. (2021). AI-enabled business-model innovation and transformation in industrial ecosystems: A framework, model and outline for further research. Journal of Business Research, 127, 85-95. https://doi.org/10.1016/j.jbusres.2021.01.016
    Cao, G., Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2021). Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making. Technovation, 106, 102312. https://doi.org/10.1016/j.technovation.2021.102312
    Capoot, A. (2023). Microsoft announces multibillion-dollar investment in ChatGPT-maker OpenAI. CNBC. https://www.cnbc.com
    Carminati, L. (2018). Generalizability in qualitative research: A tale of two traditions. Qualitative Health Research, 28(13), 2094-2101. https://doi.org/10.1177/1049732318788379
    Cavanaugh, M. A., Boswell, W. R., Roehling, M. V., & Boudreau, J. W. (2000). An empirical examination of self-reported work stress among US managers. Journal of Applied Psychology, 85(1), 65. https://doi.org/10.1037/0021-9010.85.1.65
    Chambers, C. (2004). Technological advancement, learning, and the adoption of new technology. European Journal of Operational Research, 152(1), 226-247. https://doi.org/10.1016/S0377-2217(02)00651-3
    Cheng, B., Lin, H., & Kong, Y. (2023). Challenge or hindrance? How and when organizational artificial intelligence adoption influences employee job crafting. Journal of Business Research, 164, 113987. https://doi.org/10.1016/j.jbusres.2023.113987
    Chhatre, R., & Singh, S. (2024). AI and organizational change: Dynamics and management strategies. Available at SSRN 4845917. http://dx.doi.org/10.13140/RG.2.2.16082.98246
    Chiu, Y. T., Zhu, Y. Q., & Corbett, J. (2021). In the hearts and minds of employees: A model of pre-adoptive appraisal toward artificial intelligence in organizations. International Journal of Information Management, 60, 102379. https://doi.org/10.1016/j.ijinfomgt.2021.102379
    Chuang, Y. T., Chiang, H. L., & Lin, A. P. (2025). Insights from the Job Demands–Resources Model: AI’s dual impact on employees’ work and life well-being. International Journal of Information Management, 83, 102887. https://doi.org/10.1016/j.ijinfomgt.2025.102887
    Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., ... & Zemmel, R. (2023). The economic potential of generative AI. http://dln.jaipuria.ac.in
    Chui, M., & Malhotra, S. (2018). AI adoption advances, but foundational barriers remain, 2020. McKinsey & Company. https://www.mckinsey.com
    Chui, M., Manyika, J., & Miremadi, M. (2015). Four fundamentals of workplace automation. McKinsey Quarterly, 29(3), 1-9. https://roubler.com
    Chui, M., Roberts, R., & Yee, L. (2022). Generative AI is here: How tools like ChatGPT could change your business. Quantum Black AI by McKinsey, 20. https://execed.hkubs.hku.hk
    Colbert, A., Yee, N., & George, G. (2016). The digital workforce and the workplace of the future. Academy of Management Journal, 59(3), 731-739. https://doi.org/10.5465/amj.2016.4003
    Conner, M., & Sparks, P. (2002). Ambivalence and attitudes. European Review of Social Psychology, 12(1), 37-70. https://doi.org/10.1080/14792772143000012
    Cooper, R. G. (2024). The AI transformation of product innovation. Industrial Marketing Management, 119, 62-74. https://doi.org/10.1016/j.indmarman.2024.03.008
    Copeland, B. J. (Ed.). (2004). The essential Turing. Clarendon Press.
    Costa, P. T., Jr., & McCrae, R. R. (2008). The Revised NEO Personality Inventory (NEO-PI-R). In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The SAGE handbook of personality theory and assessment, Vol. 2. Personality measurement and testing (pp. 179–198). Sage Publications, Inc. https://doi.org/10.4135/9781849200479.n9
    Crawford, E. R., LePine, J. A., & Rich, B. L. (2010). Linking job demands and resources to employee engagement and burnout: a theoretical extension and meta-analytic test. Journal of Applied Psychology, 95(5), 834. http://dx.doi.org/10.1037/a0019364
    Crevier, D. (1993). AI: the tumultuous history of the search for artificial intelligence. Basic Books, Inc..
    Dahlin, E. (2024). Who Says Artificial Intelligence Is Stealing Our Jobs?. Socius, 10, 23780231241259672.
    Damschroder, L. J., Aron, D. C., Keith, R. E., Kirsh, S. R., Alexander, J. A., & Lowery, J. C. (2009). Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implementation Science, 4, 1-15. http://dx.doi.org/10.1186/1748-5908-4-50
    Dasgupta, A., & Wendler, S. (2019). AI adoption strategies. Retrieved September, 18, 2022.
    Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. https://doi.org/10.1007/s11747-019-00696-0
    Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
    DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60
    Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-resources model of burnout. Journal of Applied Psychology, 86(3), 499-512. https://doi.org/10.1037/0021-9010.86.3.499
    Denzin, N. K., & Lincoln, Y. S. (Eds.). (2011). The Sage handbook of qualitative research. Sage.
    Deutsch, M. (1982). Interdependence and psychological orientation. In V. Derlega & J. L. Grzelek (Eds.), Cooperation and helping behavior: Theories and research (15–42). Academic Press.
    Deutsch, M. (2011). Interdependence and psychological orientation. In Conflict, interdependence, and justice: The intellectual legacy of Morton Deutsch (pp. 247-271). Springer.
    DiCicco‐Bloom, B., & Crabtree, B. F. (2006). The qualitative research interview. Medical Education, 40(4), 314-321. https://doi.org/10.1111/j.1365-2929.2006.02418.x
    Doherty, N. (1998). The role of outplacement in redundancy management. Personnel Review, 27(4), 343-353.
    Duarte, F. (2024, January 18) Number of ChatGPT Users (Jan 2024). EXPLODING TOPICS. https://explodingtopics.com
    Dubinsky, A. J., Howell, R. D., Ingram, T. N., & Bellenger, D. N. (1986). Salesforce socialization. Journal of Marketing, 50(4), 192-207. https://doi.org/10.1177/002224298605000405
    Dunwoodie, K., Macaulay, L., & Newman, A. (2023). Qualitative interviewing in the field of work and organisational psychology: Benefits, challenges and guidelines for researchers and reviewers. Applied Psychology, 72(2), 863-889. https://doi.org/10.1111/apps.12414
    Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
    Economist, T. (2020). Businesses are finding AI hard to adopt [Internet]. The Economist. https://www.economist.com
    Emery, F. E., & Trist, E. L. (1960). Socio-technical systems. Management Science, Models and Techniques, 2, 83-97.
    Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. http://dx.doi.org/10.11648/j.ajtas.20160501.11
    Firestone, W. A. (1993). Alternative arguments for generalizing from data as applied to qualitative research. Educational Researcher, 22(4), 16-23. https://doi.org/10.3102/0013189X022004016
    Fitzgerald, M., Kruschwitz, N., Bonnet, D., & Welch, M. (2014). Embracing digital technology: A new strategic imperative. MIT Sloan Management Review, 55(2), 1.
    Flowers, J. C. (2019, March). Strong and Weak AI: Deweyan Considerations. In AAAI Spring Symposium: Towards Conscious AI Systems (Vol. 2287, No. 7).
    Folkman, S., & Lazarus, R. S. (1980). An analysis of coping in a middle-aged community sample. Journal of Health and Social Behavior, 219-239. https://doi.org/10.2307/2136617
    Folkman, S., & Lazarus, R. S. (1988). Ways of coping questionnaire. https://doi.org/10.1037/t06501-000
    Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97(4), 62-73.
    Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation?. Technological Forecasting and Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019
    Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of information technology case and application research, 25(3), 277-304. https://doi.org/10.1080/15228053.2023.2233814
    Gale, N. K., Heath, G., Cameron, E., Rashid, S., & Redwood, S. (2013). Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Medical Research Methodology, 13(1), 117. https://doi.org/10.1186/1471-2288-13-117
    Gibbs, L., Kealy, M., Willis, K., Green, J., Welch, N., & Daly, J. (2007). What have sampling and data collection got to do with good qualitative research?. Australian and New Zealand Journal of Public Health, 31(6), 540-544. https://doi.org/10.1111/j.1753-6405.2007.00140.x
    Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660. https://doi.org/10.5465/annals.2018.0057
    Goldberg, L. R. (2013). An alternative “description of personality”: The Big-Five factor structure. In Personality and personality disorders (pp. 34-47). Routledge.
    Google Trends. (2024a). Search interest over 20 years for “AI” and “ChatGPT” since when Google Trends work. Retrieved from https://trends.google.com.tw
    Google Trends (2024b). Search interest over a year for “AI” and “ChatGPT” since the launch of ChatGPT. Retrieved from https://trends.google.com.tw
    Groumpos, P. P. (2021). A critical historical and scientific overview of all industrial revolutions. IFAC-PapersOnLine, 54(13), 464-471. https://doi.org/10.1016/j.ifacol.2021.10.492
    Gustafsson, J. (2017). Single case studies vs. multiple case studies: A comparative study
    Halper, F. (2014). Predictive analytics for business advantage. TDWI Research, 1-32.
    Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358-390. https://doi.org/10.1016/j.jengtecman.2012.03.007
    Hart, J., Noack, M., Plaimauer, C., & Bjørnåvold, J. (2021). Towards a structured and consistent terminology on transversal skills and competences. Brüssel: Europäische Kommission und Cedefop. Towards a structured and consistent terminology on transversal skills and competences| Esco (europa. eu), 1, 645-670.
    Hong, W., Chan, F. K., Thong, J. Y., Chasalow, L. C., & Dhillon, G. (2014). A framework and guidelines for context-specific theorizing in information systems research. Information Systems Research, 25(1), 111-136. https://doi.org/10.1287/isre.2013.0501
    Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459
    Jackson, P. (1986). Introduction to expert systems.
    Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4). https://doi.org/10.1136/svn-2017-000101
    John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives.
    Johns, G. (2006). The essential impact of context on organizational behavior. Academy of Management Review, 31(2), 386-408. https://doi.org/10.5465/amr.2006.20208687
    Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26. https://doi.org/10.3102/0013189X033007014
    Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415
    Jorzik, P., Yigit, A., Kanbach, D. K., Kraus, S., & Dabić, M. (2023). Artificial intelligence-enabled business model innovation: Competencies and roles of top management. IEEE Transactions on Engineering Management, 71, 7044-7056. https://doi.org/10.1109/TEM.2023.3275643
    Kaggwa, S., Eleogu, T. F., Okonkwo, F., Farayola, O. A., Uwaoma, P. U., & Akinoso, A. (2024). AI in decision making: transforming business strategies. International Journal of Research and Scientific Innovation, 10(12), 423-444. http://dx.doi.org/10.51244/IJRSI.2023.1012032
    Kalsoom, T., Ahmed, S., Rafi-ul-Shan, P. M., Azmat, M., Akhtar, P., Pervez, Z., ... & Ur-Rehman, M. (2021). Impact of IOT on Manufacturing Industry 4.0: A new triangular systematic review. Sustainability, 13(22), 12506. https://doi.org/10.3390/su132212506
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
    Kelley, S. (2022). Employee perceptions of the effective adoption of AI principles. Journal of Business Ethics, 178(4), 871-893. http://dx.doi.org/10.1007/s10551-022-05051-y
    Koo, B., Curtis, C., & Ryan, B. (2021). Examining the impact of artificial intelligence on hotel employees through job insecurity perspectives. International Journal of Hospitality Management, 95, 102763. https://doi.org/10.1016/j.ijhm.2020.102763
    Kotter, J. P. (2007). Leading change: Why transformation efforts fail. In Museum management and marketing (pp. 20-29). Routledge.
    Kotter, J. P. (2012). Leading change. Harvard business press.
    Kraimer, M. L., Shaffer, M. A., Bolino, M. C., Charlier, S. D., & Wurtz, O. (2022). A transactional stress theory of global work demands: A challenge, hindrance, or both?. Journal of Applied Psychology, 107(12), 2197. http://dx.doi.org/10.1037/apl0001009
    Kulkov, I. (2021). The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technology in Society, 66, 101629. https://doi.org/10.1016/j.techsoc.2021.101629
    Kumar, A., Krishnamoorthy, B., & Bhattacharyya, S. S. (2023). Machine learning and artificial intelligence-induced technostress in organizations: a study on automation-augmentation paradox with socio-technical systems as coping mechanisms. International Journal of Organizational Analysis. http://dx.doi.org/10.1108/IJOA-01-2023-3581
    Kumar, P. S. (2024). Technostress: A comprehensive literature review on dimensions, impacts, and management strategies. Computers in Human Behavior Reports, 16, 100475. https://doi.org/10.1016/j.chbr.2024.100475
    Larivière, B., Bowen, D., Andreassen, T. W., Kunz, W., Sirianni, N. J., Voss, C., ... & De Keyser, A. (2017). “Service Encounter 2.0”: An investigation into the roles of technology, employees and customers. Journal of Business Research, 79, 238-246. https://doi.org/10.1016/j.jbusres.2017.03.008
    Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press.
    Lazarus, R. S. (1993). From psychological stress to the emotions: A history of changing outlooks. Annual Review of Psychology, 44(1), 1-22. https://doi.org/10.1146/annurev.ps.44.020193.000245
    Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer publishing company.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
    Li, J. J., Bonn, M. A., & Ye, B. H. (2019). Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172-181. https://doi.org/10.1016/j.tourman.2019.02.006
    Lichtenthaler, U. (2018). Substitute or synthesis: the interplay between human and artificial intelligence. Research-Technology Management, 61(5), 12-14. https://doi.org/10.1080/08956308.2018.1495962
    Lichtenthaler, U. (2020). Extremes of acceptance: employee attitudes toward artificial intelligence. Journal of Business Strategy, 41(5), 39-45. http://dx.doi.org/10.1108/JBS-12-2018-0204
    Lincoln, Y., Guba, E., (1985). Naturalistic inquiry (Vol. 75). Sage.
    Little, L. M., Major, V. S., Hinojosa, A. S., & Nelson, D. L. (2015). Professional image maintenance: How women navigate pregnancy in the workplace. Academy of Management Journal, 58(1), 8-37. https://doi.org/10.5465/amj.2013.0599
    Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
    Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 315-329. https://doi.org/10.1109/JAS.2020.1003021
    Malhotra, N., & Hinings, C. B. (2015). Unpacking continuity and change as a process of organizational transformation. Long Range Planning, 48(1), 1-22. https://doi.org/10.1016/j.lrp.2013.08.012
    Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample size in qualitative interview studies: guided by information power. Qualitative Health Research, 26(13), 1753-1760. https://doi.org/10.1177/1049732315617444
    Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., ... & Perrault, R. (2023). Artificial intelligence index report 2023. arXiv preprint arXiv:2310.03715.
    McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI magazine, 27(4), 12-12. https://doi.org/10.1609/aimag.v27i4.1904
    Mikalef, P., Pappas, I. O., Krogstie, J., Jaccheri, L., & Rana, N. (2021). Editors’ reflections and introduction to the special section on ‘Artificial Intelligence and Business Value’. International Journal of Information Management, 57, 102313. https://doi.org/10.1016/j.ijinfomgt.2021.102313
    Mintzberg, H. (1979). The structuring of organizations. In Readings in strategic management (pp. 322-352). Macmillan Education.
    Mitchell, T.M. (1997) Machine learning. McGraw-Hill.
    Moore, D., Haines, K., Drudik, J., Arter, Z., & Foley, S. (2020). Upskill/Backfill model of career pathways advancement: the Nebraska vocational rehabilitation approach. Journal of Applied Rehabilitation Counseling. https://dx.doi.org/10.1891/JARC-D-20-00002
    Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68. https://dx.doi.org/10.28945/5078
    Morgan, D. L. (2014). Pragmatism as a paradigm for social research. Qualitative Inquiry, 20(8), 1045-1053. https://doi.org/10.1177/1077800413513733
    Muftić, F., Kadunić, M., Mušinbegović, A., & Abd Almisreb, A. (2023). Exploring Medical Breakthroughs: A Systematic Review of ChatGPT Applications in Healthcare. Southeast Europe Journal of Soft Computing, 12(1), 13-41. http://dx.doi.org/10.21533/scjournal.v12i1.252
    Murire, O. T. (2024). Artificial Intelligence and Its Role in Shaping Organizational Work Practices and Culture. Administrative Sciences, 14(12), 316. https://doi.org/10.3390/admsci14120316
    Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method of sampling in qualitative research. Strides in Development of Medical Education, 14(3), 1-6. http://dx.doi.org/10.5812/sdme.67670
    Naidoo-Chetty, M., & du Plessis, M. (2021). Job demands and job resources of academics in higher education. Frontiers in Psychology, 12, 631171. https://doi.org/10.3389/fpsyg.2021.631171
    Neumann, O., Guirguis, K., & Steiner, R. (2024). Exploring artificial intelligence adoption in public organizations: a comparative case study. Public Management Review, 26(1), 114-141. https://doi.org/10.1080/14719037.2022.2048685
    Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood Cliffs, NJ: Prentice-Hall.
    Newton, A. T., & McIntosh, D. N. (2010). Specific religious beliefs in a cognitive appraisal model of stress and coping. International Journal for the Psychology of Religion, 20(1), 39-58. https://doi.org/10.1080/10508610903418129
    Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Advances in Neural Information Processing Systems, 14.
    Nguyen Huy, Q. U. Y. (2001). Time, temporal capability, and planned change. Academy of Management Review, 26(4), 601-623. https://doi.org/10.5465/amr.2001.5393897
    Niven, P. R., & Lamorte, B. (2016). Objectives and key results: Driving focus, alignment, and engagement with OKRs. John Wiley & Sons.
    Ooi, K. B., Tan, G. W. H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., ... & Wong, L. W. (2023). The potential of generative artificial intelligence across disciplines: Perspectives and future directions. Journal of Computer Information Systems, 1-32. https://doi.org/10.1080/08874417.2023.2261010
    Orlikowski, W. J. (1996). Improvising organizational transformation over time: A situated change perspective. Information Systems Research, 7(1), 63-92. https://doi.org/10.1287/isre.7.1.63
    Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533-544. https://doi.org/10.1007/s10488-013-0528-y
    Plastino, E., & Purdy, M. (2018). Game changing value from artificial intelligence: eight strategies. Strategy & Leadership, 46(1), 16-22. http://dx.doi.org/10.1108/SL-11-2017-0106
    Polit, D. F., & Beck, C. T. (2010). Generalization in quantitative and qualitative research: Myths and strategies. International Journal of Nursing Studies, 47(11), 1451-1458. https://doi.org/10.1016/j.ijnurstu.2010.06.004
    Pumplun, L., Tauchert, C., & Heidt, M. (2019). A new organizational chassis for artificial intelligence-exploring organizational readiness factors.
    Rafferty, A. E., & Griffin, M. A. (2006). Perceptions of organizational change: a stress and coping perspective. Journal of Applied Psychology, 91(5), 1154. http://dx.doi.org/10.1037/0021-9010.91.5.1154
    Rashid, A. B., & Kausik, A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 100277. https://doi.org/10.1016/j.hybadv.2024.100277
    Ritchie, J., Ormston, R., McNaughton Nicholls, C., & Lewis, J. (2013). Qualitative research practice: A guide for social science students and researchers.
    Ritchie, J., & Spencer, L. (2002). Qualitative data analysis for applied policy research. In Analyzing qualitative data (pp. 173-194). Routledge.
    Sætra, H. S. (2023). Generative AI: Here to stay, but for good?. Technology in Society, 75, 102372. https://doi.org/10.1016/j.techsoc.2023.102372
    Sawant, R., Thomas, B., & Kadlag, S. (2022). Reskilling and upskilling: To stay relevant in today’s industry. International Review of Business and Economics, 7(1), 4. https://doi.org/10.56902/IRBE.2022.7.1.4
    Schacht, W. H. (2012). Industrial competitiveness and technological advancement: Debate over government policy. Patent Technology: Transfer and Industrial Competition.
    Schalock, R. L., Verdugo, M. A., & van Loon, J. (2018). Understanding organization transformation in evaluation and program planning. Evaluation and Program Planning, 67, 53-60. https://doi.org/10.1016/j.evalprogplan.2017.11.003
    Schaufeli, W. B., & Taris, T. W. (2013). A critical review of the job demands-resources model: Implications for improving work and health. In Bridging occupational, organizational and public health: A transdisciplinary approach, 43-68. https://doi.org/10.1007/978-94-007-5640-3_4
    Schneider, B., & Bowen, D. E. (2010). Winning the service game: Revisiting the rules by which people co-create value. In Handbook of service science (pp. 31-59). Springer. http://dx.doi.org/10.1007/978-1-4419-1628-0_4
    Scholze, A., & Hecker, A. (2023). Digital job demands and resources: Digitization in the context of the job demands-resources model. International Journal of Environmental Research and Public Health, 20(16), 6581. http://dx.doi.org/10.3390/ijerph20166581
    Scholze, A., & Hecker, A. (2024). The job demands-resources model as a theoretical lens for the bright and dark side of digitization. Computers in Human Behavior, 155, 108177. https://doi.org/10.1016/j.chb.2024.108177
    Sevilla, J., & Roldán, E. (2024). Training Compute of Frontier AI Models Grows by 4–5x Per Year. Epoch AI, May, 28. https://epoch.ai
    Sheoran, J. (2012). Technological advancement and changing paradigm of organizational communication. International Journal of Scientific and Research Publications, 2(12), 1-6.
    Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495-504. http://dx.doi.org/10.1080/10447318.2020.1741118
    Shou, Y., Zhao, X., & Chen, L. (2020). Operations strategy of cloud-based firms: achieving firm growth in the Big Data era. International Journal of Operations & Production Management, 40(6), 873-896. http://dx.doi.org/10.1108/IJOPM-01-2019-0089
    Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489. https://doi.org/10.1038/nature16961
    Simon, B. M. (2012). The implications of technological advancement for obviousness. Mich. Telecomm. & Tech. L. Rev., 19, 331. http://dx.doi.org/10.13140/2.1.4179.0088
    Sofia, M., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science: The International Journal of an Emerging Transdiscipline, 26, 39-68. https://dx.doi.org/10.28945/5078
    Sony, M., & Naik, S. (2020). Industry 4.0 integration with socio-technical systems theory: a systematic review and proposed theoretical model. Technology in Society, 61, 101248. https://doi.org/10.1016/j.techsoc.2020.101248
    Squicciarini, M., & Nachtigall, H. (2021). Demand for AI skills in jobs: Evidence from online job postings. OECD Science, Technology and Industry Working Papers, 2021(3), 1-74.
    Stake, R. E. (2013). Multiple case study analysis. Guilford Press.
    Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021). Renewable energy in the sustainable development of electrical power sector: A review. Energies, 14(24), 8240. https://doi.org/10.3390/en14248240
    Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368-383. https://doi.org/10.1016/j.giq.2018.09.008
    Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301-328. https://doi.org/10.2753/MIS0742-1222240109
    Teas, R. K., Wacker, J. G., & Hughes, R. E. (1979). A path analysis of causes and consequences of salespeople’s perceptions of role clarity. Journal of Marketing Research, 16(3), 355-369. https://doi.org/10.1177/002224377901600308
    Tolan, S., Pesole, A., Martínez-Plumed, F., Fernández-Macías, E., Hernández-Orallo, J., & Gómez, E. (2021). Measuring the occupational impact of ai: tasks, cognitive abilities and ai benchmarks. Journal of Artificial Intelligence Research, 71, 191-236. https://doi.org/10.1613/jair.1.12647
    Trist, E. L., & Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting: An examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. Human Relations, 4(1), 3-38. https://doi.org/10.1177/001872675100400101
    Tummers, L. G., & Bakker, A. B. (2021). Leadership and job demands-resources theory: A systematic review. Frontiers in Psychology, 12, 722080. https://doi.org/10.3389/fpsyg.2021.722080
    Turing, A. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433
    Tushman, M. L., & O’Reilly III, C. A. (1996). Ambidextrous organizations: Managing evolutionary and revolutionary change. California Management Review, 38(4), 8-29. https://doi.org/10.2307/41165852
    Tushman, M. L., & Romanelli, E. (1985). Organizational evolution: A metamorphosis model of convergence and reorientation. Research in Organizational Behavior.
    Verdejo Espinosa, A., Lopez, J. L., Mata Mata, F., & Estevez, M. E. (2021). Application of IoT in healthcare: keys to implementation of the sustainable development goals. Sensors, 21(7), 2330. https://doi.org/10.3390/s21072330
    Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924.
    Wang, I. K., Qian, L., & Lehrer, M. (2017). From technology race to technology marathon: A behavioral explanation of technology advancement. European Management Journal, 35(2), 187-197. https://doi.org/10.1016/j.emj.2017.01.006
    Wang, S., Pasi, G., Hu, L., & Cao, L. (2020). The Era of Intelligent Recommendation: Editorial on Intelligent Recommendation with Advanced AI and Learning. IEEE Intelligent Systems, 35(5), 3-6. https://doi.org/10.1109/MIS.2020.3026430
    Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org./10.1145/365153.365168
    Wirtz, J., & Jerger, C. (2016). Managing service employees: Literature review, expert opin- ions, and research directions. The Service Industries Journal, 36(15–16), 757–788. https://doi.org/10.1080/02642069.2016.1278432
    Wischnevsky, J. D., & Damanpour, F. (2006). Organizational transformation and performance: An examination of three perspectives. Journal of Managerial Issues, 104-128.
    World Economic Forum. (2023). Future of jobs report 2023. https://www3.weforum.org
    Wu Suen, L. J., Huang, H. M., & Lee, H. H. (2014). A comparison of convenience sampling and purposive sampling. The Journal of Nursing, 61(3), 105-111. https://doi.org/10.6224/JN.61.3.105
    Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2007). The role of personal resources in the job demands-resources model. International Journal of Stress Management, 14(2), 121. https://doi.org/10.1037/1072-5245.14.2.121
    Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009). Reciprocal relationships between job resources, personal resources, and work engagement. Journal of Vocational Behavior, 74(3), 235-244. https://doi.org/10.1016/j.jvb.2008.11.003
    Xia, M. (2023). Co-working with AI is a double-sword in Technostress? An integrative review of Human-AI collaboration from a holistic process of Technostress. In SHS Web of Conferences (Vol. 155, p. 03022). EDP Sciences. http://dx.doi.org/10.1051/shsconf/202315503022
    Xie, M., Ding, L., Xia, Y., Guo, J., Pan, J., & Wang, H. (2021). Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms. Economic Modelling, 96, 295-309. https://doi.org/10.1016/j.econmod.2021.01.009
    Yee, L., Chui, M., Roberts, R., & Xu, S. (2024). Why agents are the next frontier of generative AI. McKinsey Digital Practice.
    Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage.
    Yuan, Q., Kong, J., Liu, C., & Jiang, Y. (2023). Understanding the effects of specific techno-stressors on strain and job performance: a meta-analysis of the empirical evidence. Information Technology & People, 38(2), 787-826. http://dx.doi.org/10.1108/ITP-08-2022-0639
    Yusuf, S. O., Abubakar, J. E., Durodola, R. L., Ocran, G., Paul-Adeleye, A. H., & Yusuf, P. O. (2024). Impact of AI on continuous learning and skill development in the workplace: A comparative study with traditional methods. http://dx.doi.org/10.30574/wjarr.2024.23.2.2439
    Zarifhonarvar, A. (2023). Economics of ChatGPT: A labor market view on the occupational impact of artificial intelligence. Journal of Electronic Business & Digital Economics. http://dx.doi.org/10.2139/ssrn.4350925
    Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439-457. https://doi.org/10.1007/s40747-020-00212-w
    Description: 碩士
    國立政治大學
    心理學系
    111752021
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111752021
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File SizeFormat
    202101.pdf2455KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback