English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118291/149328 (79%)
造訪人次 : 78002808      線上人數 : 60
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/159245


    題名: AI大型語言模型著作權問題之研究 ——以大型語言模型訓練資料為中心
    Research on Copyright Issues of AI Large Language Models: Focusing on Training Data for Large Language Models
    作者: 邱思齊
    Chiou, Sz-Chi
    貢獻者: 馮震宇
    Fong, Jerry G.
    邱思齊
    Chiou, Sz-Chi
    關鍵詞: 生成式AI
    大型語言模型
    訓練資料侵權問題
    合理使用
    著作權
    Generative AI
    Large Language Models
    Training Data Copyright Infringement
    Fair Use
    Copyright
    日期: 2024
    上傳時間: 2025-09-01 16:05:44 (UTC+8)
    摘要: AI大型語言模型著作權問題於Chat GPT開啟之生成式AI時代中,一直是備受關注的議題,尤其自2023年紐約時報公司對Open AI和微軟公司提起訴訟後,大型語言訓練資料著作權侵權問題亦成為實務和學說討論的重心。故本文以「大型語言模型使用受著作權保護的資料進行AI訓練是否構成侵權」作為核心問題,以案例探討為主,文獻回顧為輔展開討論。
    本文首先探討大型語言模型之訓練流程、區辨文本和資料探勘技術僅為大型語言模型訓練階段之輔助技術,並揭示GPT-3訓練資料集中Common Crawl、WebText2和Book2相關著作權爭議;接著,將美國、歐盟、法國、的國、英國、日本、新加坡、中國和韓國對於AI訓練資料之政策或規範,分成沿用合理使用原則、明確設立TDM例外規定與態度尚未明確三類比較分析,並接續討論近期以Open AI為被告之大型語言模型文字訓練資料訴訟,統整各案件原告對被告之侵權指控,主要包括被告模型訓練階段侵犯重製權,與輸出階段重製權、改作權、公開展示權與散布權。最後,討論合理使用原則、TDM例外規定與臺灣現行法制,於以Open AI為被告之大型語言模型文字訓練資料訴訟之適用,除針對核心問題提出本文見解,也對臺灣於AI訓練資料之法制建構提出建議。
    The issue of copyright in large language models (LLMs) has become a highly debated topic in the era of generative AI initiated by tools like ChatGPT. Particularly after the New York Times filed lawsuits against OpenAI and Microsoft in 2023, the focus of both practical and academic discussions has shifted to the copyright infringement of training data used for large language models. This paper addresses the core question: "Does the use of copyrighted materials in AI training for large language models constitute infringement?" It employs a case-based analysis supplemented by a review of relevant literature.
    First, this paper examines the training process of LLMs, highlighting that text and data mining technologies serve merely as auxiliary techniques in the training stage. It also reveals copyright controversies surrounding datasets used to train GPT-3, such as Common Crawl, WebText2, and Book2. Subsequently, it conducts a comparative analysis of policies and regulations related to AI training data across jurisdictions, including the United States, the European Union, France, Germany, the United Kingdom, Japan, Singapore, China, and South Korea. These are categorized into three approaches: reliance on the fair use principle, explicit establishment of text and data mining (TDM) exceptions, and unclear regulatory attitudes.
    The paper further discusses recent lawsuits involving OpenAI as a defendant over the use of textual training data for LLMs, summarizing plaintiffs' infringement allegations, which primarily include violations of reproduction rights during the training phase, as well as reproduction, adaptation, public display, and distribution rights during the output phase. Finally, the paper explores the applicability of the fair use principle, TDM exceptions, and Taiwan’s current legal framework to such lawsuits. It provides insights into the core question and offers recommendations for Taiwan’s legal framework on AI training data.
    參考文獻: 一、中文文獻
    專書
    1.Jon Krohn, Grant Beyleveld, Aglaé Bassens,黃駿、哈雷譯,深度學習的16堂課:CNN + RNN + GAN + DQN + DRL,看得懂、學得會、做得出!,旗標,2021年9月。
    2.三津村直貴,陳子安譯,圖解AI人工智慧大未來:關於人工智慧一定要懂的96件事,旗標,2018年7月。
    3.林東清,人工智慧:概念與應用管理,元照,2022年9月。
    4.松尾豐,江裕真譯,了解人工智慧的第一本書: 機器人和人工智慧能否取代人類?,經濟新潮社,2016年8月。
    5.陳家駿、許正乾、林宜柔,AI/Chat GPT v. 智慧財產權美國生成式AI案例評析,元照,2024年9月。
    6.談繼勇、郭子釗、李劍、佃松宜,500個必問題:深度學習AI頂尖企業面試實況,深智數位,2021年5月。

    期刊論文
    1.王世仁,美國著作權合理使用抗辯之最新實務,智慧財產月刊第250期,頁44-67,2019年10月。
    2.王思涵,文本與資料探勘著作權合理使用分析及其認定,Open Journal of Legal Science,第11期,頁5131-5135,2023年11月。
    3.高嘉鴻,人工智慧創作是否受著作權保護之略探,智慧財產權月刊,第239期,頁18-34,2018年11月。
    4.高嘉鴻,從 Cariou v. Prince 案看美國合理使用第一要素中「轉化利用(transformative use)」的判斷,智慧財產權月刊,第192期,頁74,2014年12月。
    5.高嘉鴻,歐盟 2019 年數位單一市場著作權指令概要,智慧財產權月刊,第263期,頁6-22,2020年11月。
    6.高嘉鴻,資料探勘著作權限制級例外規定國際立法趨勢研究,智慧財產權月刊,第298期,頁36-56,2023年10月。
    7.張紅斌、左玉茹,《著作權法(修訂草案送審稿)》評述,交大法學,2015年第1期,頁22-33,2015年。
    8.徐龍、鄭冠宇,論機器學習之著作權困境與應對,國立臺灣大學法學論叢,第52卷第2期,頁391-475,2023年6月。
    9.陳家駿,從美國人工智慧擴散模型訴訟案── 談生成式 AI 圖像之著作侵權議題,智慧財產權月刊,第298期,頁6-35,2023年10月。
    10.馮震宇,生成式 AI 著作權爭議揮之不去 Books3 又引發新議題,能力雜誌,第813期,頁92-102,2023年11月。
    11.馮震宇,谷阿莫錯在哪?著作權大鬥法 合理使用有前提,能力雜誌電子報,第345期,2017年6月。
    12.蔡惠如,著作權合理使用概括規定之回顧與前瞻,智慧財產權月刊,第209期,頁4-25,2016年5月。
    13.簡仁宗、陳鴻儀,使用關聯法則為主之語言模型於擷取長距離中文文字關聯性,ROCLING論文集,第2001期,頁1-21,2001年。
    14.葉奇鑫、許斌,AI 大語言模型訓練與著作權合理使用之思考-以紐約時報對 OpenAI 訴訟案為中心,全國律師,第28卷第6期,頁5-19,2024年6月。

    網路資料
    1.Chris,音樂版 ChatGPT 來了! Google AI 音樂生成器 MusicLM 開放註冊使用,INSIDE,2023年5月11日,載於:https://www.inside.com.tw/article/31592-google-text-to-music-ai-MusicLM-public(最後瀏覽日:2023年5月30日)。
    2.Simon Liu,淺談 GPT 生成式語言模型(2) — ChatGPT 介紹篇,Medium,2023年2月15日,載於:https://blog.infuseai.io/gpt-model-now-introduction-1d993c855deb (最後瀏覽日:2024年9月10日)
    3.Echo Green,震撼登場!GPT-4o發佈,AGI已然到來,GitMind,2024年5月14日,載於:https://gitmind.com/tw/gpt-4o-introduction.html(最後瀏覽日:2024年10月4日)。
    4.T客邦,GPT-4跟GPT-3.5差在哪?免費和付費方式怎麼用?詳解ChatGPT原理,數位時代,2023年3月27日,載於:https://www.bnext.com.tw/article/74591/chatgpt-diff-withe-gpt-3point5 (最後瀏覽日:2024年9月24日)
    5.王焱、別樣紅,AI大模型訓練的侵權風險與合法路徑,Law.asia,2024年10月29日,載於:https://law.asia/zh-hans/copyright-risks-ai-training/(最後瀏覽日:2024年10月31日)。
    6.石隆盛,當AI開始創作…… 談談大數據在藝術領域的應用與影響,典藏ARTouch,2017年1月15日,載於:https://artouch.com/art-views/content-4511.html(最後瀏覽日:2024年10月1日)
    7.北京企智未來教育科技有限公司,ChatGPT模型中的1750億參數,到底啥意思?,AIGC開放社區,2023年12月31日,載於:https://mp.weixin.qq.com/s/rAcbcsDoHs45XMKVdsuUvg(最後瀏覽日:2024年10月1日)。
    8.李先泰,Meta重磅釋出開源AI模型Llama 3.1!性能超越GPT-4o,為何要開源?祖克伯親訴3關鍵,數位時代,2024年7月24日,載於:https://www.bnext.com.tw/article/79856/meta-llama-3.1-2024(最後瀏覽日:2024年9月20日)。
    9.李宏毅,【達人聊產業】BEYOND ChatGPT ! 大型語言模型 AI 全集中解析,財報狗網誌,2023年4月26日,載於:https://xn--statementdog-og46a.com/blog/archives/13497(最後瀏覽日:2024年10月14日)。
    10.李建興,OpenAI新一代具關聯思考能力的模型o1,可逐步分析推理精確解答問題,iThome,2024年9月16日,載於:https://www.ithome.com.tw/news/165026(最後瀏覽日:2024年9月20日)。
    11.余至浩,【剖析中研院大型語言模型事件的衝擊】為何臺灣必須擁有本土化的LLM,iThome,2023年10月12日,載於https://money.udn.com/money/story/5635/8080641(最後瀏覽日:2024年10月5日)。
    12.袁如陵,歐盟AI法案上路,能緩解生成式AI對著作權的衝擊嗎?,獨立評論在天下,2024年4月24日,載於:https://opinion.cw.com.tw/blog/profile/553/article/14793(最後瀏覽日:2024年10月18日)。
    13.孟建國,真假難辨:當「深偽」技術被用於親中宣傳,紐約時報中文網,2023年2月9日,載於:https://cn.nytimes.com/technology/20230209/artificial-intelligence-training-deepfake/zh-hant/(最後瀏覽日:2023年5月29日)。
    14.國家科學及技術委員會,國家科學及技術委員會公告:預告制定「人工智慧基本法」草案,公共政策網路參與平臺,2024年7月15日,載於https://join.gov.tw/policies/detail/4c714d85-ab9f-4b17-8335-f13b31148dc4(最後瀏覽日:2024年12月10日)。
    15.張紅斌,千呼萬喚始出來--2020年修正著作權法評述,君合法評,2020年11月12日,載於:https://www.junhe.com/law-reviews/1335(最後瀏覽日:2024年10月31日)。
    16.張時健,才沒那麼容易被AI取代?ChatGPT與新聞業的相愛相殺,聯合報新聞網,2023年6月5日,載於:https://global.udn.com/global_vision/story/8664/7203293(最後瀏覽日:2024年11月30日)。
    17.曾子軒,ChatGPT推新模型o1怎麼用?為何它算得上「博士級」?,遠見查制,2024年9月13日,載於:https://www.gvm.com.tw/article/115694#ChatGPT-4o-versus-GPT-4(最後瀏覽日:2024年9月24日)
    18.黃小渝,全球最大盜版網站海盜灣被瑞典警方查封,大紀元,2014年12月11日,載於:https://www.epochtimes.com/b5/14/12/11/n4315846.htm(最後瀏覽日:2024年10月5日)。
    19.黃榮楠、祁筠、馬欽奕、林泓嵐,《生成式AI服務管理暫行辦法》四大亮點解析,君合法評,2023年7月24日,載於:https://www.junhe.com/legal-updates/2226?locale=zh(最後瀏覽日:2024年10月31日)。
    20.楊智傑,【合勤講堂】日本著作權法對開發生成式AI最友善?臺灣要不要參考?,梅花新聞網,2024年7月11日,載於:https://www.i-meihua.com/Article/Detail/10227#google_vignette(最後瀏覽日:2024年10月26日)。
    21.趙若漢,日本新修正著作權法鼓勵AI發展,中研院法律所資訊法中心,載於:https://infolaw.iias.sinica.edu.tw/?p=612(最後瀏覽日:2024年10月25日)。
    22.極客公園,20萬本盜版書都在「book 3」,AI巨頭從這偷數據!這是什麼?上傳者為何沒在怕?,數位時代,2023年8月25日,載於:https://www.bnext.com.tw/article/76503/book3-ai-training(最後瀏覽日:2024年10月5日)。
    23.無形視界,「訓練資料集Books1」 是什麼?,載於:https://tw.intangibles.world/what-is-dataset-books1/(最後瀏覽日:2024年10月3日)。
    24.陸向陽,推探Google開源、輕量級大型語言模型Gemma,MAKERPRO,2024年3月21日,載於:https://makerpro.cc/2024/03/gemma-a-lightweight-large-language-model/(最後瀏覽日:2024年10月4日)。
    25.陳右怡,人工智慧三大關鍵發展趨勢:AI數據、AI算法、AI算力,IKE產業情報網,2019年11月20日,載於:https://ieknet.iek.org.tw/iekrpt/rpt_more.aspx?actiontype=rpt&indu_idno=14&domain=44&rpt_idno=251894360(最後瀏覽日:2024年10月1日)。
    26.陳冠榮,對 ChatGPT 宣戰!Meta 發表 Llama 3 新模型,新版 AI 助理獲支援,科技新報,2024年4月19日,載於:https://technews.tw/2024/04/19/introducing-meta-llama-3/(最後瀏覽日:2024年9月20日)。
    27.陳曉莉,Meta發表音樂生成模型MusicGen,iThome,2023年6月12日,載於:https://www.ithome.com.tw/news/157281(最後瀏覽日:2023年6月12日)。
    28.陳曉莉,Google開源Gemma 2 2B,宣稱其聊天機器人評測超越所有GPT-3.5模型,iThome,2024年8月1日,載於:https://www.ithome.com.tw/news/164250(最後瀏覽日:2024年9月20日)。
    29.葉子萱,OpenAI的「7叛徒」另立門戶,新創Anthropic真能打敗ChatGPT?,創業小聚,2024年3月8日,載於:https://meet.bnext.com.tw/articles/view/51157(最後瀏覽日:2024年9月20日)。
    30.經濟部智慧財產局,令函案號:電子郵件1100226,經濟部智慧財產局著作權主題網,2021年2月26日,載於:https://www.tipo.gov.tw/copyright-tw/cp-407-887440-f59f1-301.html (最後瀏覽日:2024年10月6日)。
    31.樂羽嘉,用AI繪畫 到底算不算自己的作品?,天下雜誌,載於:https://www.cw.com.tw/article/5124726(最後瀏覽日:2023年6月9日)。
    32.維基百科,維基百科新手入門,載於:https://zh.wikipedia.org/zh-tw/Wikipedia:%E6%96%B0%E6%89%8B%E5%85%A5%E9%96%80/%E4%B8%BB%E9%A0%81 (最後瀏覽日:2024年10月6日)。
    33.蔡娪嫣,維基百科20周年:全人類共同打造的免費知識庫,如何造福你我的生活?,數位時代,2021年1月13日,載於:https://www.storm.mg/article/3382719(最後瀏覽日:2024年10月5日)。
    34.湯皓茹,版權費 Free!作曲 AI 一鍵生成音樂,公播、創作皆自由,INSIDE,2023年1月10日,載於:https://www.inside.com.tw/article/30388-AI-free-music-AmadeusCode

    二、外文文獻
    論文(英文)
    1.A. Feder Cooper, James Grimmelmann, The Files are in the Computer: Copyright, Memorization, and Generative AI, arXiv.2404.12590, v4, 18-19 (2024). Available at: https://doi.org/10.48550/arXiv.2404.12590
    2.Alan D. Thompson, What’s in my AI? A Comprehensive Analysis of Datasets Used to Train GPT-1, GPT-2, GPT-3, GPT-NeoX-20B, Megatron-11B, MT-NLG, and Gopher, 10-13(2022). Available at: https://LifeArchitect.ai/whats-in-my-ai
    3.Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever, Language Models are Unsupervised Multitask Learners, Open AI, 3(2019). Available at: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
    4.Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever, Improving Language Understanding by Generative Pre-Training, 2-4 (2018). Available at: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
    5.Art Neill, James Thomas and Erika Lee, A Framework for Applying Copyright Law to the Training of Textual Generative Artificial Intelligence, 32, Tex. Intell. Prop. L.J.225, 233-234 (2024). Available at: https://scholarlycommons.law.cwsl.edu/fs/451/
    6.Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need, 31st Conference on Neural Information Processing Systems, arXiv:1706.03762, v7, 2 (2023). Available at: https://arxiv.org/abs/1706.03762
    7.Daniel Rodriguez Maffioli, Copyright in Generative AI training: Balancing Fair Use through Standardization and Transparency, 10-19(2023). Available at SSRN: https://ssrn.com/abstract=4579322
    8.Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation By Jointly Learning To Align And Translate, arXiv:1409.0473, v7,1 (2016). Available at: https://arxiv.org/abs/1409.0473
    9.Edward Y Chang, Unlocking the Wisdom of Large Language Models: An Introduction to The Path to Artificial General Intelligence, arXiv:2409.01007, 31-43 (2024). Available at: https://arxiv.org/abs/2409.01007
    10.Eleanor Dickson, Megan Senseney, Beth Namachchivaya and Bertram Ludäscher, Synthesis of Cross-Stakeholder Perspectives on Text Data Mining with Use-Limited Data: Setting the Stage for an IMLS National Forum, 5 (2018). Available at: https://www.ideals.illinois.edu/items/106057/bitstreams/335363/data.pdf
    11.Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes and Ajmal Mian, A Comprehensive Overview of Large Language Models, arXiv: 2307.06435, v9,1(2024). Available at: https://arxiv.org/abs/2307.06435
    12.Jack Bandy and Nicholas Vincent, Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus, arXiv:2105.05241, 2-5(2021). Available at: https://arxiv.org/abs/2105.05241
    13.Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv:1810.04805, v2, 4171-4172 (2019). Available at: https://arxiv.org/abs/1810.04805
    14.James Grimmelmann, Copyright for Literate Robots, 101 Iowa Law Review. 657, 658-659 (2016), U of Maryland Legal Studies Research Paper No. 2015-16, Available at SSRN: https://ssrn.com/abstract=2606731
    15.Jeanne C. Fromer, Market Effects Bearing on Fair Use, 90 Washington Law Review 615, 631(2015). Available at: https://digitalcommons.law.uw.edu/wlr/vol90/iss2/4
    16.Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret Mitchell and Matt Gardner, Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus, arXiv:2104.08758, v2, 3-12(2021). Available at: https://arxiv.org/abs/2104.08758
    17.Jessica Silbey, Review of What' s Wrong with Copying? by Abraham Drassinower, Vol. 7 No. 2, IP Law Book Review. 7,10-12 (2017). Available at: https://scholarship.law.bu.edu/faculty_scholarship/2283/
    18.Jiarui Liu, An Empirical Study of Transformative Use in Copyright Law, 22 Stanford Technology Law Review 163, 166-167 (2019). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330236
    19.Kalpana Tyagi, Copyright, text & data mining and the innovation dimension of generative AI, Journal of Intellectual Property Law & Practice, Volume 19, Issue 7. 557, 559-560(2024). Available at https://academic.oup.com/jiplp/article/19/7/557/7624901
    20.Kamiel J. Koelman, Fixing the Three-Step Test, European Intellectual Property Review, Vol.8 407, 407(2006). Available at SSRN: https://ssrn.com/abstract=924174
    21.Mark A. Lemley and Bryan Casey, Fair Learning, Tex. L. Rev., Vol. 99(4), 743, 753-762(2021). Available at: https://texaslawreview.org/fair-learning/
    22.Marita Skjuve, Petter Bae Brandtzaeg, and Asbjørn Følstad, Why do people use ChatGPT? Exploring user motivations for generative conversational AI, First Monday, volume 29(1), 7-9 (2024). Available at: https://dx.doi.org/10.5210/fm.v29i1.13541
    23.Matthew Sag, Copyright and Copy-Reliant Technology., Northwestern University Law Review, Vol.103. 1607, 1644-1673 (2009). Available at SSRN: https://ssrn.com/abstract=1257086
    24.Matthew Sag, Copyright Safety for Generative AI, Houston Law Review, Vol. 61, No. 2. 295, 295-296(2023). Available at SSRN: https://ssrn.com/abstract=4438593
    25.Matthew Sag and Peter K. Yu, The Globalization of Copyright Exceptions for AI Training, Emory Law Journal, Vol. 74, 2025, Forthcoming, Texas A&M University School of Law Legal Studies Research Paper Forthcoming, Emory Legal Studies Research Paper Forthcoming. 1, 16-22(2024). Available at SSRN: https://ssrn.com/abstract=4976393
    26.Matthew Sag, The New Legal Landscape for Text Mining and Machine Learning, Journal of the Copyright Society of the USA, Vol. 66. 291, 293 (2019). Available at: https://ssrn.com/abstract=3331606
    27.Michael W. Carroll, Copyright and the Progress of Science: Why Text and Data Mining Is Lawful, 53 UC Davis Law Review 893, 2019, American University, WCL Research Paper No. 2020-15. 893, 959 (2019). Available at SSRN: https://ssrn.com/abstract=3531231
    28.Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald and Jack Clark, The AI Index 2024 Annual Report, AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, 47(2024). Available at: https://arxiv.org/abs/2405.19522
    29.Pierre N. Leval, in Toward a Fair Use Standard, 103 HARV. L. REV. 1105, 1111 (1990). Available at: https://doi.org/10.2307/1341457.
    30.Rossana Ducato and Alain Strowel, Limitations to Text and Data Mining and Consumer Empowerment: Making the Case for a Right to Machine Legibility, CRIDES Working Paper Series. 1, 15 (2018). Available at SSRN: https://ssrn.com/abstract=327890
    31.Shahid Iqbal Rai, Maida Maqsood, Bushra Hanif, Muhammad Ali Adam, Muhammad Arslan, Hira Shafiq and Muhammad Sijawal, Computational linguistics at the crossroads: A comprehensive review of NLP advancements, World Journal of Advanced Engineering Technology and Sciences, 11(02).578, 579-581(2024). Available at: https://wjaets.com/sites/default/files/WJAETS-2024-0146.pdf
    32.Shervin Minaee, et al., Large Language Models: A Survey, arXiv:2402.06196, v2,1(2024). Available at: https://arxiv.org/abs/2402.06196
    33.Sobel, Benjamin, A Taxonomy of Training Data Disentangling the Mismatched Rights, Remedies and Rationales for Restricting Machine Learning, In Jyh-An Lee, Reto M Hilty, and Kung-Chung Liu (ed.), Artificial Intelligence and Intellectual Property 221, 229 (2021). Available at: https://academic.oup.com/book/39560/chapter-abstract/339433034?redirectedFrom=fulltext
    34.Stefan Baack, A Critical Analysis of the Largest Source for Generative AI Training Data: Common Craw, ACM, 5(2024). Available at https://doi.org/10.1145/3630106.3659033
    35.Stefan Baack, Training Data for the Price of a Sandwich1 Common Crawl’s Impact on Generative AI, Mozilla Insights, 1-20(2024). Available at: https://foundation.mozilla.org/en/research/library/generative-ai-training-data/
    36.Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever and Dario Amodei, Language Models Are Few-Shot Learners, arXiv:2005.14165, v4, 5-9(2020). Available at: https://arxiv.org/abs/2005.14165
    37.Trieu H. Trinh, Quoc V. Le, A Simple Method for Commonsense Reasoning, arXiv:1906.02847, v2,12(2019). Available at: https://arxiv.org/abs/1806.02847
    38.Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie and Ji-Rong Wen, A Survey of Large Language Models, arXiv: 2303.18223, v14,17(2024). Available at: https://arxiv.org/abs/2303.18223
    39.Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding and Lianwen Jin, Datasets for Large Language Models: A Comprehensive Survey, arXiv:2402.18041,84(2024). Available at: https://arxiv.org/abs/2402.18041
    40.Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba and Sanja Fidler, Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, arXiv:1506.06724, 3(2015). Available at: https://arxiv.org/abs/1506.06724

    論文(韓文)
    1.홍승기(洪昇基),데이터마이닝 면책 입법 방향에 대한 의문(關於資料探勘豁免立法方向的問題),경영법률(經營法律),第32卷第4期,頁34,2022年。
    2.차상육(車相祿),저작권법상 인공지능 학습용 데이터셋의 보호와 쟁점 ―텍스트・데이터마이닝(TDM) 면책규정을 중심으로―(著作權法下人工智慧可訓練資料集保護的法律問題 - 聚焦文字和資料探勘(TDM)的著作權例外 -), 경영법률(經營法律), 第32卷第1期,頁42,2021年10月。

    官方報告
    1.文化庁,著作権法の一部を改正する法律(平成30年法律第30号)について,載於:https://www.bunka.go.jp/seisaku/chosakuken/hokaisei/h30_hokaisei/(最後瀏覽日:2024年10月25日)。
    2.柿沼太一,進化する機械学習パラダイス ~改正著作権法が日本のAI開発をさらに加速する~,STORIA法律事務所,載於:https://storialaw.jp/blog/4936 (最後瀏覽日:2024年10月25日)
    3.류시원(柳時媛),인공지능 시대 저작권 정책 형성절차에 관한 제언(人工智慧時代著作權政策形成程序的建議),법제처(法制處),頁115-116,2024年。載於:https://www.moleg.go.kr/boardDownload.es?bid=mpblegpst&list_key=134243&seq=1
    4.DSIT, Consultation outcome A pro-innovation approach to AI regulation: government response, GOV.UK, available at https://www.gov.uk/government/consultations/ai-regulation-a-pro-innovation-approach-policy-proposals/outcome/a-pro-innovation-approach-to-ai-regulation-government-response
    5.DSIT, Policy paper A pro-innovation approach to AI regulation, GOV.UK, available at https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper (last visited Oct. 31, 2024).
    6.Intellectual Property Office Of Singapore, Factsheet on Copyright Act 2021, 14(2022), available at:https://www.ipos.gov.sg/docs/default-source/resources-library/copyright/copyright-act-factsheet.pdf
    7.Japan Copyright Office, General Understanding on AI2 and Copyright in Japan: Overview, Agency for Cultural Affairs of Japan, 10(2024), available at https://www.bunka.go.jp/english/policy/copyright/pdf/94055801_01.pdf
    8.JOSEPH R. BIDEN JR., Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence THE WHITE HOUSE, available at https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/ (last visited Oct. 31, 2024).
    9.Korea Copyright Office, A Guide on Generative AI and Copyright, Ministry of Culture, Sports and Tourism, 10(2023), available at https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#
    10.Prime Minister's Office, 10 Downing Street and His Majesty King Charles III, Oral statement to Parliament The King's Speech 2024, GOV.UK, available at https://www.gov.uk/government/speeches/the-kings-speech-2024 (last visited Oct. 31, 2024).
    11.State of Israel Ministry of Justice, Opinion: Uses of Copyright Materials for Machine Learning, 40(2022), available at https://www.gov.il/BlobFolder/legalinfo/machine-learning/he/18-12-2022.pdf
    12.UKIPO, Consultation outcome Artificial Intelligence and Intellectual Property: copyright and patents, GOV.UK, available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf (last visited Oct. 31, 2024).
    13.UKIPO, Exception to copyright: Research, 6 (2014). Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf
    14.USCO, Copyright and Artificial Intelligence Part 1: Digital Replicas, PREFACE (2024). Available at: https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-1-Digital-Replicas-Report.pdf
    15.USPO, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, Copyright.gov, available at https://www.copyright.gov/newsnet/2023/1017.html (last visited Oct. 31, 2024).

    判決
    1.Andy Warhol Found. for the Visual Arts v. Goldsmith, 598 U.S. 1(U.S., 2023).
    2.Andy Warhol Found. for the Visual Arts, Inc. v. Goldsmith, 11 F.4th 26 (2d Cir. 2021).
    3.Authors Guild v. Google, Inc., 804 F.3d 202 (2d Cir. 2015).
    4.Authors Guild, Inc. v. HathiTrust, 755F.3d87,105(2dCir.2014)
    5.A.V. exrel.Vanderhye v. iParadigms, LLC,562F.3d630,634(4thCir.2009).
    6.Campbell v. Acuff-Rose Music, 510 U.S. 569 (1994).
    7.Cariou, v. Prince, 714 F.3d 694 (2d Cir. 2013).
    8.Google LLC v. Oracle Am., Inc., 141 S. Ct. 1183 (2021).
    9.Harper & Row v. Nation Enterprises, 471 U.S. 539(1985)
    10.Perfect10, Inc. v. Amazon. co, Inc., 508 F.3d 1146 (9thCir.2007).

    裁定
    1.Judge’s Order on Motion to Dismiss, The Intercept Media, Inc. v. OpenAI, Inc., 1:24-cv-01515 (S.D.N.Y. ruled on 21 Nov. 2024)
    2.Judge’s Memorandum & Opinion, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195 (S.D.N.Y. ruled on 22 Nov. 2024)
    3.Judge’s Order on Motion to Dismiss, Raw Story Media, Inc. v. OpenAI Inc., 1:24-cv-01514 (S.D.N.Y. ruled on 7 Nov. 2024)
    4.Order Modified by Judge, Authors Guild v. OpenAI Inc., 1:23-cv-08292 (S.D.N.Y. filed on 16 Feb. 2024).
    5.Order on Motion to Dismiss, Tremblay v. OpenAI, Inc., 3:23-cv-03223 (N.D. Cal. ruled on 12 FFeb. 2024)
    6.Order on Stipulation, 4, Tremblay v. OpenAI, Inc., 3:23-cv-03223, Silverman v. OpenAI, Inc., 3:23-cv-03416, Chabon v. OpenAI, Inc., 3:23-cv-04625(N.D. Cal. filed on 12 Feb. 2024)

    卷證
    1.Anthropic ’s Motion for Preliminary Injunction, Concord Music Group, Inc. v. Anthropic PBC, 5:24-cv-03811(N.D. Cal. filed on 6 Jan. 2024)
    2.Anthropic ’s Motion to Dismiss, Concord Music Group, Inc. v. Anthropic PBC, 5:24-cv-03811(N.D. Cal. filed on 15 Aug. 2024)
    3.Microsoft’s Motion to Dismiss, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195(S.D.N.Y. filed on 4 Mar. 2024)
    4.Microsoft’s Memorandum of Law in Support of Motion, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195(S.D.N.Y. filed on 4 Mar. 2024)
    5.OpenAI’s Answer to Complaint, Authors Guild v. OpenAI Inc., 1:23-cv-08292; Alter v. OpenAI Inc., 1:23-cv-10211, (S.D.N.Y. filed on 4 Mar. 2024).
    6.Open AI’s Memorandum of Law in Support of Motion, Tremblay v. OpenAI, Inc., 3:23-cv-03223 (N.D. Cal. filed on 28 Aug. 2023)
    7.Open AI’s Motion to Dismiss, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195, (S.D.N.Y. filed on 26 Feb. 2024)
    8.Open AI’s Memorandum of Law in Support of Motion, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195, (S.D.N.Y. filed on 26 Feb. 2024)
    9.Open AI’s Motion to Dismiss, Tremblay v. OpenAI, Inc., 3:23-cv-03223 (N.D. Cal. filed on 28 Aug. 2023)
    10.Plaintiff’s Complaint (first consolidated amended), Authors Guild v. OpenAI Inc., 1:23-cv-08292(S.D.N.Y. filed on 2 May 2024)
    11.Plaintiff’s Complaint, Basbanes v. Microsoft Corporation, 1:24-cv-00084, (S.D.N.Y. filed on 5 Jan. 2024)
    12.Plaintiff’s Complaint (first amended), Chabon v. OpenAI, Inc., 3:23-cv-04625, (N.D. Cal. filed on 5 Oct. 2023)
    13.Plaintiff’s Complaint, Concord Music Group, Inc. v. Anthropic PBC, 5:24-cv-03811, (N.D. Cal. filed on 8 Oct. 2023)
    14.Plaintiff’s Complaint, Daily News LP v. Microsoft Corporation, 1:24-cv-03285, (S.D.N.Y. filed on 3 Apr. 2024)
    15.Plaintiff’s Complaint, The Center for Investigative Reporting, Inc. v. OpenAI, Inc., 1:24-cv-04872, (S.D.N.Y. filed on 24 Sep. 2024)
    16.Plaintiff’s Complaint, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195 (S.D.N.Y. filed on 27 Dec. 2023)
    17.Plaintiff’s Complaint (first consolidated amended), Tremblay v. OpenAI, Inc., 3:23-cv-03223, Silverman v. OpenAI, Inc., 3:23-cv-03416, Chabon v. OpenAI, Inc., 3:23-cv-04625(N.D. Cal. filed on 13 Mar. 2024)
    18.Re: Updated Joint Dispute Chart, Authors Guild v. OpenAI Inc., 1:23-cv-08292; Alter v. OpenAI Inc., 1:23-cv-10211, (S.D.N.Y. filed on 22 Nov. 2024).
    19.Re: Updated Joint Dispute Chart, The New York Times Company v. Microsoft Corporation, 1:23-cv-11195, (S.D.N.Y. filed on 22 Nov. 2024)

    網路資料
    1.Alison Eldridge, Reddit, Britannica Money, available at https://www.britannica.com/money/Reddit (last visited Oct. 4, 2024).
    2.Alistair Barr and Kali Hays, The New York Times got its content removed from one of the biggest AI training datasets. Here's how it did it., Business Insider, available at https://www.businessinsider.com/new-york-times-content-removed-common-crawl-ai-training-dataset-2023-11/ (last visited Sep 21, 2024).
    3.Alex Reisner, These 183,000 Books Are Fueling the Biggest Fight in Publishing and Tech, The Atlantic, available at https://www.theatlantic.com/technology/archive/2023/09/books3-database-generative-ai-training-copyright-infringement/675363/ (last visited Oct. 5, 2024).
    4.Andres Guadamuz, The EU AI Act and copyright, TechnoLlama, available at https://www.technollama.co.uk/the-eu-ai-act-and-copyright (last visited Oct. 18, 2024).
    5.Anirban Ghoshal, Microsoft’s new Phi 3.5 LLM models surpass Meta and Google, InfoWorld, available at https://www.infoworld.com/article/3489654/microsofts-new-phi-3-5-llm-models-surpass-meta-and-google.html (last visited Sep. 20, 2024).
    6.Ashley King, Created by Humans, Helping People License Their Creative Works to AI Models, Raises $5 Million, Digital Music News, available at https://www.digitalmusicnews.com/2024/06/26/created-by-humans-funding-five-million/ (last visited Dec 12, 2024).
    7.Ben Wodecki, 6 Latest AI Models from Meta, OpenAI, Apple and More, AI BUSINESS, available at https://aibusiness.com/nlp/6-latest-ai-models-from-meta-openai-apple-and-more#close-modal (last visited Sep. 20, 2024).
    8.Bill Rosenblatt, The Media Industry’s Race To License Content For AI, Forbes, available at https://www.forbes.com/sites/billrosenblatt/2024/07/18/the-media-industrys-race-to-license-content-for-ai/ (last visited Dec 12, 2024).
    9.Brown University, Four years later, AI language dataset created by Brown graduate students goes viral, available at https://www.brown.edu/news/2023-04-25/open-web-text (last visited Oct. 4, 2024).
    10.Capital Economics, AI, Economies and Markets – How artificial intelligence will transform the global economy, available at: https://www.capitaleconomics.com/ai-economies-and-markets-how-artificial-intelligence-will-transform-global-economy (last visited Nov. 5, 2024).
    11.Cheyenne DeVon, On ChatGPT’s one-year anniversary, it has more than 1.7 billion users—here’s what it may do next, CNBC, available at https://www.cnbc.com/2023/11/30/chatgpts-one-year-anniversary-how-the-viral-ai-chatbot-has-changed.html (last visited Sep 19, 2023).
    12.Dr Robyn Trigg and Robert Guthrie, UK AI and copyright voluntary code of practice dropped – what next?, Osborne Clarke, available at https://www.osborneclarke.com/insights/uk-ai-and-copyright-voluntary-code-practice-dropped-what-next (last visited Oct. 31, 2024).
    13.Ethan Mollick, Scaling: The State of Play in AI, One Useful Thing, available at https://www.oneusefulthing.org/p/scaling-the-state-of-play-in-ai (last visited Sep. 20, 2024).
    14.Eugene Kim, Amazon is Secretly Working on a ChatGPT killer, Business Insider, available at https://www.businessinsider.com/amazon-chatgpt-rival-codenamed-metis-2024-6?international=true&r=US&IR=T (last visited Sep. 20, 2024).
    15.European IT Certification Institute, What are weights and biases in AI? ,Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, Introduction, What is machine learning, available at https://eitca.org/artificial-intelligence/eitc-ai-gcml-google-cloud-machine-learning/introduction/what-is-machine-learning/explain-weights-and-biases/ (last visited Oct.7, 2024).
    16.Faustine Ngila, AI companies are too cheap to pay for legit books, QUARTZ, available at https://qz.com/openai-books-piracy-microsoft-meta-google-chatgpt-bard-1850757064 (last visited Oct. 5, 2024).
    17.GNU Operating System, What is Copyleft?, available at https://www.gnu.org/licenses/copyleft.html.en (last visited Oct. 6, 2024).
    18.Hayden Field, Open AI’s active user count soars to 300 million people per week, CNBC, available at https://www.cnbc.com/2024/12/04/openais-active-user-count-soars-to-300-million-people-per-week.html (last visited Dec 10, 2024).
    19.Jeffrey Dastin, Google unveils ChatGPT rival Bard, AI search plans in battle with Microsoft, Reuters, available at https://www.reuters.com/technology/google-opens-bard-chatbot-test-users-plans-more-ai-search-2023-02-06/ (last visited Oct. 4, 2024).
    20.Jim Giles, Internet encyclopaedias go head to head, Nature, available at https://www.nature.com/articles/438900a (last visited Oct. 6, 2024).
    21.Joel Smith, Imogen Ireland, and Katie Barton, Artificial intelligence and intellectual property: UK Government responds to UK IPO consultation, Hogan Lovells, available at https://www.engage.hoganlovells.com/knowledgeservices/news/artificial-intelligence-and-intellectual-property-uk-government-responds-to-uk-ipo-consultation (last visited Oct. 31, 2024).
    22.Jonathan Gillham, Block AI Bots from Crawling Websites Using Robots.txt, Originality.ai, available at https://www.wired.com/story/the-fight-against-ai-comes-to-a-foundational-data-set/ (last visited Sep 23, 2024).
    23.Kalev Leetaru, Common Crawl And Unlocking Web Archives For Research, Forbes, available at https://www.forbes.com/sites/kalevleetaru/2017/09/28/common-crawl-and-unlocking-web-archives-for-research/ (last visited Sep 23, 2024).
    24.Karen Elburg Adar Bengom (Ortal), Ministry of Justice Opinion on the Use of Copyrighted Works for Machine Learning Purposes, Herzog, Fox & Ne'eman, available at https://herzoglaw.co.il/en/news-and-insights/ministry-of-justice-opinion-on-the-use-of-copyrighted-works-for-machine-learning-purposes/ (last visited Oct. 30, 2024).
    25.Kate Knibbs, Publishers Target Common Crawl In Fight Over AI Training Data, WIRED, available at https://www.wired.com/story/the-fight-against-ai-comes-to-a-foundational-data-set/ (last visited Sep 21, 2024).
    26.Kate Knibbs, The Battle Over Books3 Could Change AI Forever, WIRED, available at https://www.wired.com/story/battle-over-books3/ (last visited Oct 3, 2024).
    27.Kate Knibbs, This Startup Wants YouTube Creators to Get Paid for AI Training Data, WIRED, available at https://www.wired.com/story/license-to-scrape-youtube-ai-data-license-creators/ (last visited Dec 12, 2024).
    28.Keith D. Foote, A Brief History of Generative AI, DATAVERSITY, available at https://www.dataversity.net/a-brief-history-of-generative-ai/ (last visited Oct.1, 2024).
    29.Open AI, Introducing ChatGPT, available at https://openai.com/index/chatgpt/ (last visited Sep.20, 2024).
    30.OpenWebText2, WebText Background, available at https://openwebtext2.readthedocs.io/en/latest/background/ (last visited Oct. 4, 2024).
    31.OpenWebText2, Welcome!, available at https://openwebtext2.readthedocs.io/en/latest/ (last visited Oct. 4, 2024).
    32.Paul Joseph and Kathy Berry, UK fails to agree AI/copyright code of practice, Linklaters, available at https://www.linklaters.com/insights/blogs/digilinks/2024/february/uk-fails-to-agree-ai---copyright-code-of-practice (last visited Oct. 31, 2024).
    33.Peter Schoppert, The books used to train LLMs more on the unseemly use of pirated ebooks to train AIs, AI and Copyright, available at https://aicopyright.substack.com/p/the-books-used-to-train-llms (last visited Oct. 5, 2024).
    34.Qwiklabs-Courses, Introduction to Large Language Models, Google Cloud, available at https://www.youtube.com/watch?v=ijRSawUuYzg&t=6s (last visited Sep. 23, 2024).
    35.Richard Lea, Google swallows 11,000 novels to improve AI's conversation, The Guardian, available at https://www.theguardian.com/books/2016/sep/28/google-swallows-11000-novels-to-improve-ais-conversation (last visited Oct. 6, 2024).
    36.Rights Allinace, Rights Alliance removes the illegal Books3 dataset used to train artificial intelligence, available at https://rettighedsalliancen.com/rights-alliance-removes-the-illegal-books3-dataset-used-to-train-artificial-intelligence/ (last visited Oct 2, 2024).
    37.Schaffererin and Nickomang, Concepts - Small and large language models, Microsoft, available at https://learn.microsoft.com/en-us/azure/aks/concepts-ai-ml-language-models (last visited Oct.7, 2024).
    38.Shira Perlmutter, On Intel. Prop. Of the S. Comm. on the Judiciary, available at https://www.copyright.gov/ laws/hearings/USCO‐Letter‐on‐AI‐and‐Copyright‐Initiative‐Update‐Feb‐23‐2024.pdf (last visited Nov 8, 2024).
    39.Tiernan Ray, OpenAI plans to offer its 250 million ChaptGPT users even more services, CNBC, available at https://www.zdnet.com/article/openai-plans-to-offer-its-250-million-chaptgpt-users-even-more-services/(last visited Dec 10, 2024).
    40.Timothy B Lee and Sean Trott, Large language models, explained with a minimum of math and jargon, Understanding AI, available at https://www.understandingai.org/p/large-language-models-explained-with (last visited Sep.20, 2024).
    41.Wikipedia, Wikipedia, available at https://en.wikipedia.org/wiki/Wikipedia(last visited Oct. 6, 2024).
    42.Wikipedia, Wikipedia:Copyright , available at https://en.wikipedia.org/wiki/Wikipedia:Copyrights (last visited Oct. 6, 2024).
    43.Wikipedia, Wikipedia:Contact us/Licensing, available at https://en.wikipedia.org/wiki/Wikipedia:Contact_us/Licensing (last visited Oct. 6, 2024).
    44.Zain ul Abideen, Reinforcement Learning from Human Feedback (RLHF): Empowering ChatGPT with User Guidance, Medium, available at https://medium.com/@zaiinn440/reinforcement-learning-from-human-feedback-rlhf-empowering-chatgpt-with-user-guidance-95858592fdbb (last visited Sep.11, 2024).
    描述: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    111364204
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111364204
    資料類型: thesis
    顯示於類別:[科技管理與智慧財產研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    420401.pdf7954KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋