English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118295/149332 (79%)
Visitors : 78132367      Online Users : 115
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159244


    Title: AI晶片設計產業之動態競爭分析 —— 以Nvidia和AMD為例
    An Analysis of Competitive Dynamics in the AI Chip Design Industry: Case Studies of Nvidia and AMD
    Authors: 姜蘊玲
    Chiang, Yun-Ling
    Contributors: 楊宗翰
    Yang, Tsung-Han
    姜蘊玲
    Chiang, Yun-Ling
    Keywords: AI晶片產業
    GPU
    Nvidia
    AMD
    動態競爭
    AMC分析
    外部環境
    AI Chip Industry
    GPU
    Nvidia
    AMD
    Competitive Dynamics
    AMC Model
    External Environment
    Date: 2025
    Issue Date: 2025-09-01 16:05:30 (UTC+8)
    Abstract: 隨著人工智慧AI(Artificial Intelligence)與高效能運算(High-Performance Computing)應用的崛起,AI晶片產業已成為全球半導體平台競爭的核心。自2000年代以來,GPU(Graphics Processing Unit)從圖形處理器逐步轉型為AI運算的基礎設施,推動AI模型規模與算力成長,帶動產業進入新競爭時代。Nvidia憑藉「軟硬體協同」加「生態鎖定」的競爭策略,使Nvidia在AI訓練市場市占率長期維持在80%以上,成為產業技術標準與生態規則的制定者。 AMD(Advanced Micro Devices, Inc.)則推動「開放」加「異質」策略使AMD在推 論市場、邊緣運算與部分資料中心場景取得突破,市占率逐步提升,成為AI產業格局中具威脅性的挑戰者。
    本研究採用動態競爭理論之市場共同性與資源相似性指標與AMC(察覺-Awareness、動機-Motivation、能力-Capability)分析架構,針對Nvidia與AMD於AI晶片產業的競爭行動與回應進行個案剖析。本研究主要結論如下:
    結論一:AI晶片設計產業中,具有市場領先優勢的先進廠商相較於挑戰者,其在產品佈局上為更完整,技術迭代上具有較深遠且連貫的升級,且投入更多資源在高附加價值的高階產品市場,挑戰者多僅以片段式技術升級與回應,並投注資源在中低階產品市場。
    結論二:AI晶片設計產業中,挑戰者需善用生態系統、供應鏈協同或技術路線調整,並結合策略模仿與差異化,並針對產業技術轉換或外部環境變動的關鍵時機,尋求切入與突破的機會,才能有效降低進入障礙,提升市場地位。
    結論三:AI晶片設計產業中,具有市場及技術優勢的領導者廠商可透過態壁壘強化、技術迭代加速與供應鏈韌性反制挑戰者發起的攻擊,提升競爭障礙,維持領導者地位。
    本研究理論貢獻在於驗證動態競爭理論與AMC模型於AI晶片產業的適用性。未來可進一步探討AI晶片產業地緣政治、產業政策與新興應用之競爭影響。
    Driven by the growth of Artificial Intelligence (AI) and High-Performance Computing (HPC), AI chips have become central to global semiconductor competition. Since the 2000s, GPUs have transitioned from graphics accelerators to essential AI computing infrastructure, enabling larger AI models and greater computational power. Nvidia, through a “hardware-software co-optimization” and “ecosystem lock-in” strategy, has sustained over 80% market share in AI training and set prevailing industry standards. In contrast, Advanced Micro Devices (AMD) leverages an “open” and “heterogeneous” approach to achieve gains in inference, edge computing, and select data center markets, positioning itself as a significant competitor in the AI chip sector.
    This study adopts the dynamic competition theory’s indicators of market commonality and resource similarity, along with the AMC (Awareness–Motivation–Capability) analysis framework, to conduct a case analysis of the dynamic competitive actions and responses between Nvidia and AMD within the AI chip industry. The fianl conclusions of this study are as follows:
    1. In the AI chip design industry, advanced firms with market leadership have more comprehensive product portfolios, deeper and more consistent technical iterations, and invest more resources in the high value-added, high-end product market. Challengers, on the other hand, mostly respond with fragmented technological upgrades and allocate resources to the mid- and low-end product markets.
    2. In the AI chip design industry, challengers must fully leverage ecosystems, supply chain collaboration, or adjust their technology paths. By combining strategic imitation and differentiation, and seizing critical opportunities stemming from technological shifts or changes in the external environment, challengers can effectively lower entry barriers and enhance their market positions.
    3. In the AI chip design industry, leading firms with market and technological advantages can fortify entry barriers, accelerate technical iteration, and reinforce supply chain resilience to counteract challengers’ initiatives, thereby raising competitors’ hurdles and maintaining their leadership positions.
    The theoretical contribution of this study lies in validating the applicability of dynamic competition theory and the AMC model to the AI chip industry. Future research may further explore the impact of geopolitics, industrial policy, and emerging applications on competition within the AI chip sector.
    Reference: Advanced Micro Devices, Inc. (2007). 2006 Annual Report on Form 10-K.

    Advanced Micro Devices, Inc. (2021). AMD and Cray Win Frontier Supercomputer DOE Deal. Moor Insights & Strategy.

    Advanced Micro Devices, Inc. (2024). AMD Reports Fourth Quarter and Full Year 2023 Financial Results. AMD Investor Relations.

    AnandTech. (2004). Price Guides April 2004: Video Cards and Memory. https://www.anandtech.com/show/1300

    AMD. (2020). AMD CDNA architecture white paper. Advanced Micro Devices, Inc.
    https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf


    AMD. (2024). AMD to Acquire Xilinx, Creating the Industry’s High Performance Computing Leader. AMD Corporate News.
    https://ir.amd.com/news-events/press-releases/detail/977/amd-to-acquire-xilinx-creating-the-industrys-high-performance-computing-leader

    AMD. (2025). AMD ROCm™ software. AMD. https://www.amd.com/en/products/software/rocm.html

    Barney, J. B. (1986). Strategic factor markets: Expectations, luck, and business strategy. Management Science, 32(10), 1231-1241.

    Barney, J. B., & Hoskisson, R. E. (1990). Strategic groups: Untested assertions and research proposals. Managerial and Decision Economics, 11(2), 187-198.

    Business Insider. (2024). AWS AI Chips Gain an Edge With Wider Regional Availability.
    https://www.businessinsider.com/aws-ai-chips-wider-regional-availability-microsoft-google-2024-9

    Chen, M.-J. (1996). Competitor analysis and interfirm rivalry: Toward a theoretical integration. Academy of Management Review, 21(1), 100-134.

    Chen, M.-J., & Miller, D. (2012). Competitive dynamics: Themes, trends, and a. prospective research platform. Academy of Management Annals, 6(1), 135-210.

    Chen, M.-J., & Miller, D. (2015). Reconceptualizing competitive dynamics: A multidimensional framework. Strategic Management Journal, 36(5), 758–775.

    Chen, M.-J., Michel, J. G., & Lin, W. (2021). Worlds apart? Connecting competitive. dynamics and the resource-based view of the firm. Journal of Management, 47(7), 1781–1805.

    DIGITIMES. (2025). Global AI server market and industry trends, 2025. DIGITIMES Research.
    https://www.digitimes.com/reports/item.asp?id=20250108RS400

    Ferrier, W. J. (2001). Navigating the competitive landscape: The drivers and. consequences of competitive aggressiveness. Academy of Management Journal, 44(4), 858–877.

    Forbes. (2016). AMD CEO Lisa Su and the art of a turnaround. Forbes Technology.
    https://www.forbes.com/sites/patrickmoorhead/2016/11/01/amd-ceo-lisa-su-and-the-art-of-a-turnaround/

    Forbes. (2022). Together, AMD, Pensando, And Xilinx Advance Their Roadmaps. Forbes Technology.
    https://www.forbes.com/sites/tiriasresearch/2022/07/20/together-amd-pensando-and-xilinx-advance-their-roadmaps/

    GameDev Magazine. (2004). The Rise of GeForce: Developer Ecosystem and Game Optimization. GameDev Magazine, 12(4), 32-39.

    Global Information, Inc. (2023). Artificial Intelligence (AI) Chip Market - Growth, Trends, and Forecasts (2023–2029). GII.
    https://www.gii.tw/report/moi1406240-artificial-intelligence-ai-chip-market-growth.html

    Harvard Business School Digital Initiative. (2021). NVIDIA’s winning platform strategy with CUDA.
    https://d3.harvard.edu/platform-digit/submission/nvidias-winning-platform-strategy-with-cuda/

    Hitt, M. A., Ireland, R. D., & Hoskisson, R. E. (2019). Strategic management: Concepts and cases: Competitiveness and globalization (12th ed.). Cengage Learning.

    Hsu, M.-Y., & Chen, M.-J. (2006). Competitor analysis and inter-firm rivalry by integrating market commonality and resource similarity. [Working Paper]. Darden Graduate School of Business, University of Virginia.

    IBM. (2024. What’s the difference between AI accelerators and GPUs? IBM Think.
    https://www.ibm.com/think/topics/ai-accelerator-vs-gpu

    Jon Peddie Research. (2001).Add-in Board Market Report. Jon Peddie Research.

    Jon Peddie Research. (2005, October 12). Workstation Market Revitalized in 2005, States Jon Peddie Research Workstation Report.
    https://www.jonpeddie.com/news/workstation-market-revitalized-in-2005-states-jon-peddie-research-workstati/

    Jon Peddie Research. (2022). Nvidia's GeForce 256: The First Fully Integrated GPU. Electronic Design. https://www.electronicdesign.com/technologies/embedded/article/21178111/jon-peddie-research-nvidias-geforce-256-the-first-fully-integrated-gpu

    Jon Peddie Research. (2023). The history of the GPU: From inception to AI
    https://www.jonpeddie.com/news/the-history-of-the-gpu-from-inception-to-ai-3/

    Leopold, G. (2019). AWS upgrades its GPU-backed AI inference platform. AIWire.
    https://www.aiwire.net/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/


    Mahoney, J. T., & Pandian, J. R. (1992). The resource‐based view within the. conversation of strategic management. Strategic Management Journal, 13(5), 363-380.

    Miller, D., & Chen, M.-J. (1996). The simplicity of competitive repertoires: An empirical. analysis. Strategic Management Journal, 17(6), 419–439.

    Micron Technology, Inc. (2025, June 12). Micron HBM Designed into Leading AMD AI Platform.
    https://investors.micron.com/news-releases/news-release-details/micron-hbm-designed-leading-amd-ai-platform

    McGee, J., & Thomas, H. (1986). Strategic groups: Theory, research and taxonomy. Strategic Management Journal, 7(2), 141-160.

    McKinsey & Company. (2025). The cost of compute: A $7 trillion race to scale data centers. McKinsey Insights.
    https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-cost-of-compute-a-7-trillion-dollar-race-to-scale-data-centers

    NVIDIA. (2002). NVIDIA GeForce FX GPUs and Microsoft DirectX 9.0 API [White paper]. NVIDIA Corporation. https://www.pny.com/file%20library/company/support/product%20brochures/geforce%20graphics/user%20guides%20and%20tutorials/microsoftdirectx_v1.pdf


    NVIDIA. (2017). NVIDIA TESLA V100 GPU Architecture. [White paper]. NVIDIA.
    https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

    Nvidia. (2020). What is a GPU?
    https://www.nvidia.com/en-us/drivers/what-is-gpu/

    NVIDIA. (2023). Volta Tensor Core GPU Achieves New AI Performance Milestones. NVIDIA Developer Blog.
    https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

    NVIDIA. (2023). Structured Sparsity in the NVIDIA Ampere Architecture and Applications in Search Engines. NVIDIA Developer Blog.
    https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/

    NVIDIA. (2023). Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and TensorRT. NVIDIA Developer Blog.
    https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/

    NVIDIA. (2025). NVIDIA Grace CPU and Arm Architecture. NVIDIA.
    https://www.nvidia.com/en-us/data-center/grace-cpu/

    NVIDIA. (2025). NVIDIA unveils NVLink Fusion for industry to build semi-custom AI infrastructure partner ecosystem. NVIDIA Newsroom. https://nvidianews.nvidia.com/news/nvidia-nvlink-fusion-semi-custom-ai-infrastructure-partner-ecosystem

    Porter, M. E. (1979). How competitive forces shape strategy. Harvard Business Review, 57, 137-145.

    Porter, M. E. (2008). The five competitive forces that shape strategy. Harvard Business. Review, 86(1), 25-40.

    Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning. using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 873–880). ACM.
    https://dl.acm.org/doi/10.1145/1553374.1553486

    ResearchAndMarkets.com. (2023). Artificial Intelligence (AI) Chip Market Size, Share & Trends Analysis Report By Chip Type, By Processing Type, By Technology, By Application, By End-use, By Region, And Segment Forecasts, 2023 - 2029. Research and Markets.
    https://www.researchandmarkets.com/reports/ai-chip-market

    Schumpeter, J. A. (1942). Capitalism, Socialism and Democracy. Harper Perennial.

    Shimpi, A. L. (2006). AMD & ATI: The acquisition from all points of view. AnandTech. https://www.anandtech.com/show/2044

    Smith, K. G., Ferrier, W. J., & Ndofor, H. (2001). Competitive dynamics research: Critique and future directions. In M. A. Hitt, R. E. Freeman, & J. S. Harrison (Eds.), The Blackwell handbook of strategic management (pp. 308–334). Blackwell.

    Smith, R., & Bonshor, G. (2025). AMD advancing AI 2025. AnandTech.

    TSMC. (2004). TSMC Technology Report 2004. Taiwan Semiconductor Manufacturing Company.
    https://investor.tsmc.com/sites/ir/annual-report/2004/2004_Business_Overview_E.pdf

    DigiTimes. (2025). 美光HBM4已出貨主要客戶2025市佔目標穩健達陣 [Micron HBM4 shipment to major customers with strong 2025 market share goal]. https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000724530_PHI6O7LO21ZYPU1WF4L2S

    孫瑞隆(2021)。平台領先者及後進者之競爭策略與覆蓋策略研究[未出版之碩士論文]。國立台灣大學國際企業研究所

    江秉修(2022)。行動通訊產業IC設計廠的動態競爭—以高通及聯發科為例[未出版之碩士論文]。國立政治大學科技與智慧財產研究所。

    張詠晴(2024)。從專利分析探討企業發明人流動與組織間知識創造之關係 ─以Intel與AMD為例[未出版之碩士論文]。國立政治大學科技與智慧財產研究所。
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    111364116
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111364116
    Data Type: thesis
    Appears in Collections:[科技管理與智慧財產研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    411601.pdf3468KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback