English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118405/149442 (79%)
造訪人次 : 78404440      線上人數 : 10
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/159243


    題名: 替代性信用評分模型之歧視性風險與法規因應
    Discriminatory Risks and Regulatory Responses in AI-Based Alternative Credit Scoring
    作者: 陳沐恩
    Chen, Mu-En
    貢獻者: 莊弘鈺
    Chuang, Hung-Yu
    陳沐恩
    Chen, Mu-En
    關鍵詞: 替代性信用評分模型
    人工智慧
    信用評分
    信貸歧視
    金融消費者保護
    人工智慧治理
    Alternative Credit Scoring Model
    Artificial Intelligence
    Credit Scoring
    Credit Discrimination
    Financial Consumer Protection
    Artificial Intelligence Governance
    日期: 2025
    上傳時間: 2025-09-01 16:05:18 (UTC+8)
    摘要: 近年來人工智慧和機器學習迅速發展,其應用已遍及各產業領域。於金融領域中,替代性信用評分模型即為其重要應用場景。藉由採用替代數據與新興技術進行信用評估,替代性信用評分模型得以促進普惠金融的實現,然同時也帶來偏誤與歧視之隱憂。美國和歐盟近來已對此陸續做出法規或監管政策上的回應,我國則因整體產業起步較晚,相關法規因應尚付闕如。
    有鑑於此,本文擬從消費者保護、人工智慧治理及資料保護等面向,梳理美國與歐盟相關法規、近期主管機關解釋及實務判決,進而分析其監理重點與監管趨勢,期能透過比較法研究汲取可供我國借鏡之處。研究結果發現,儘管美歐在規制手段上有所差異,惟於監管目標上仍有諸多相似之處,兩地皆展現出擴大監管範圍、強化資訊揭露之趨勢,藉以增進數位金融時代下的消費者保護。
    我國尚欠缺針對信貸歧視之有效法規與人工智慧監管法案,目前反歧視法與人工智慧基本法皆未通過。本文認為,我國反歧視法草案應將適用範圍擴及信貸交易,俾使潛在受歧視者得獲適當救濟。另參酌美歐監管趨勢,宜先於《金融業運用人工智慧(AI)指引》新增資料限制與透明度要求。由於該指引係屬行政指導,且規範對象僅限傳統金融機構,本文認為中長程而言應提升相關規範位階以強化其拘束力,並將新興金融科技業者納入規範對象,以充分保障我國消費者於借貸市場之權益。
    In recent years, the rapid advancement of artificial intelligence (AI) and machine learning has led to wide-ranging applications across various industries. In the financial sector, one significant application is AI-based alternative credit scoring models. By leveraging alternative data and emerging technologies in creditworthiness assessments, these models have the potential to promote financial inclusion. However, they also raise concerns about bias and discrimination. The U.S. and the EU have developed policy and regulatory responses to address these issues, whereas Taiwan still lacks corresponding legal frameworks.
    Therefore, this thesis examines relevant laws, regulations, agency responses, and judicial decisions in the U.S. and EU from the perspectives of consumer protection, AI governance, and data protection. Through comparative legal analysis, this research identifies key regulatory priorities and emerging trends in both jurisdictions, aiming to provide concrete guidance for the enhancement of Taiwan’s legal framework. The research findings suggest that while the U.S. and EU adopt divergent regulatory approaches, they share similarities in their goals and effects. Both jurisdictions are extending the regulatory scope and strengthening disclosure requirements to enhance consumer protection in the digital finance era.
    Taiwan’s current legal framework lacks effective regulatory tools to address credit discrimination and govern the use of AI. The proposed Anti-Discrimination Act and AI Basic Act have not yet been passed. This paper argues that the scope of the draft Anti-Discrimination Act should be expanded to cover credit transactions, thereby ensuring appropriate remedies for individuals potentially subject to discriminatory lending practices. Drawing on regulatory trends in the U.S. and EU, this paper also recommends amending the “Guidelines for Artificial Intelligence (AI) Applications in the Financial Industry” to incorporate transparency requirements and data limitations. Given that the current Guidelines are administrative in nature, non-binding, and apply only to traditional financial institutions, this paper advocates that, in the medium to long term, their legal hierarchy should be elevated and their scope expanded to encompass emerging fintech companies, thereby ensuring robust consumer protection in Taiwan’s lending market.
    參考文獻: 一、中文文獻
    專書
    王志誠(2017),現代金融法,3版,臺北:新學林。
    汪志堅、王志誠、熊全迪、杜怡靜、温演福、陳玉芬、王震宇、陳皓芸、汪志勇、陳純德(2020),金融科技、人工智慧與法律,臺北:五南。
    谷湘儀、臧正運(2019),變革中的金融科技法制,臺北:五南。
    張陳弘、莊植寧(2022),新時代之個人資料保護法制:歐盟GDPR與臺灣個人資料保護法的比較說明,2版,臺北:新學林。

    期刊論文
    丁正中(2004),消費金融信用風險研究—信用評分概述,信用資訊月刊,民國九十三年十一月號,頁1-8。
    丁正中、李彥錚(2013),2013年美國FICO巨量資料分析研討會考察紀要,金融聯合徵信,23 期,頁36-46。
    李世德(2018),GDPR與我國個人資料保護法之比較分析,台灣經濟論衡,16卷3期,頁69-93。
    李彥錚、鄭聖儒(2020),應用類神經網路及非傳統信用資料於信用評分模型之探討,金融聯合徵信,37期,頁3-22。
    邱文聰(2018),初探人工智慧中的個資保護發展趨勢與潛在的反歧視難題,收於:劉靜怡編,人工智慧相關法律議題芻議,頁149-175,臺北:元照。
    林思惟(2010),聯徵中心個人信用評分之回顧與展望,金融聯合徵信雙月刊,15期,頁8-15。
    林思惟(2016),歐盟新規:個人資料保護規則—數位防護的新縱深,金融聯合徵信,29 期,頁14-22。
    林勤富(2025),歐盟《人工智慧法》之制度設計、規範內涵與治理侷限,中研院法學期刊,36期,頁1-119。
    周伯峰(2016),論民事上歧視禁止規定的證立可能性,政大法學評論,147期,頁159-202。
    翁逸泓(2018),科技人權-全民電子通訊監察與個人資料保護,臺灣民主季刊,15卷1期,頁1-43。
    翁逸泓(2022),資料治理法制:歐盟模式之啟發,東海大學法學研究,64期,頁55-116。
    郭昀翰(2020),論普惠金融時代下之金融排擠效應及其因應之道—以美國法制經驗為中心,華岡法粹,69期,頁133-182。
    郭戎晉(2020),論歐盟個人資料保護立法域外效力規定暨其適用問題,政大法學評論,161期,頁1-70。
    郭戎晉(2020),論人工智慧技術應用、法律問題定位及監管立法趨勢-以美國實務發展為核心,成大法學,39期,頁173-235。
    郭戎晉(2023),國際趨勢下之人工智慧監管可能模式與臺灣推動課題,全國律師,27卷6期,頁18-36。
    郭戎晉(2025),人工智慧全面監管時代來臨?—剖析歐盟人工智慧法之光與影,資訊社會研究,48期,頁119-156。
    許炳華(2024),人工智慧與信用評分-以金融貸款歧視為探討核心,財金法學研究,7卷1期,頁1-31。
    許嘉芳(2022),修復 AI 偏見—以 NIST 標準為核心建立識別與管理 AI 偏見之作法,科技法律透析,34卷7期,頁37-44。
    陳靜慧(2017),歐洲人權法院及歐洲法院對間接歧視之適用,收於:李建良編,憲法解釋之理論與實務第九輯,頁385-436,臺北:中央研究院法律學研究所。
    黃昭元(2012),論差別影響歧視與差別對待歧視的關係—評美國最高法院Ricci v. DeStefano(2009)判決,中研院法學期刊,11期,頁1-63。
    黃相博(2021),人工智慧與金融信用評分,中華法學會,20 期,頁195-218。
    黃詩淳(2023), AI可解釋性的法學意義及其實踐,臺大法學論叢,52卷特刊,頁931-972。
    葉啟洲(2014),民事交易關係上之反歧視原則—德國一般平等待遇法之借鏡,東吳法律學報,26期,頁143-200。
    楊智傑、鄭富源(2023),歐盟人工智慧法與生成式AI規範,國會季刊,52卷1期,頁1-30。
    廖淑君(2020),人工智慧應用與個人資料保護之研究-以 GDPR 自動化個人決策與側寫規定為核心,財金法學研究,3卷1期,頁103-137。
    廖淑君(2022),人工智慧與普惠金融—淺析演算法於徵信/授信應用之金融消費者保護議題,財金法學研究,5卷1期,頁115-150。
    鄭聖儒(2021),美國信用資訊市場及信用評分發展現況簡介,金融聯合徵信,38 期,頁3-13。
    劉祐君(2020),我國信貸反歧視規範初探—以美國《公平信貸機會法》為比較,萬國法律,233 期,頁91-99。
    劉靜怡(2022),違憲之後-111年憲判字第13號判決簡評,當代法律,11期,頁6-11。
    賴柏志(2006),消費者個人信用評分之發展現況,金融風險管理季刊,2卷4期,頁105-110。
    戴凡真(2022),「先買後付」開啟新消費生態系,財金資訊季刊,102期,頁52-57。

    博碩士學位論文
    王詩函(2022),企業建構新興信用評分模型所面臨之個資保護法規範與因應—以借貸領域之應用為中心,國立政治大學科技管理與智慧財產研究所碩士論文。
    吳媚烜(2025),人工智慧金融與金融歧視之研究—以信用貸款為中心,國立臺灣大學科際整合法律學研究所碩士論文。
    洪靜怡(2020),我國個人金融信用評分法制之研究,國立交通大學科技法律研究所碩士在職專班論文。
    許嘉珊(2020),金融科技下的消費者保護責任——以P2P網路借貸平台為例,東吳大學法律學研究所碩士論文。
    黃靖軒(2022),自動化決策產生歧視之認定與法律爭議問題研究—以性別就業歧視案件為例,東吳大學法律學研究所碩士論文。

    研究報告
    陳韋佑(2024),綜合性平等法之法制研究-以歧視認定與救濟為中心,立法院法制局專題研究報告。

    網路資料
    AI金融科技協會,普匯金融科技攜手東吳大學發展「AI金融科技平台」,2019年7月16日,載於:https://www.aifintechtw.com/article?article=725
    AI金融科技協會,初期發展不被眾人看好的普匯萌芽期,2019年7月20日,載於:https://www.aifintechtw.com/article?article=724
    王孟倫,無財力證明也能申請信貸 金管會開放銀行可採「AI模型評估」,自由財經,2024年8月8日,載於:https://ec.ltn.com.tw/article/breakingnews/4763342
    行政院,政院通過「個人資料保護委員會組織法」草案及「個人資料保護法」部分條文修正草案 完備獨立監督機制及執法權限 建立AI全面應用時代資料治理,行政院,2025年3月27日,載於:https://www.ey.gov.tw/Page/9277F759E41CCD91/747cda78-926f-4205-99b3-1a735fc1b97b
    行政院人權及轉型正義處,「反歧視法」草案預告及對外公開徵詢意見,行政院人權資訊網,2024年5月2日,載於:https://www.ey.gov.tw/hrtj/83E5FBBD47B54AE4/5beaf7a2-0aa7-486f-827b-a50dd596628a
    李自立,AI基本法草案 數發部:在創新與風險中找平衡,Rti中央廣播電臺,2025年4月23日,載於:https://www.rti.org.tw/news/view/id/2246994
    李佳熹,金管會AI指引、銀行公會AI規範發布,三大重點一次看懂!,財團法人資訊工業策進會數位轉型研究院,2024年10月2日,載於:https://www.find.org.tw/indus_trend/browse/875b2d221ea9f38c4fc418f3d0089ead
    周書瑋,【AI的多重宇宙】UNIVERSE-02偏見與歧視,CASE報科學,2023年4月12日,載於:https://case.ntu.edu.tw/blog/?p=41761
    芮嘉瑋,深度學習神經網路之運作,北美智權報,2021年5月26日,載於:http://tw.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_210526_0706.htm
    金管會,105年11月17日 各部會於立法院進行「普惠金融之推動方向與辦理情形」專題報告,中華民國身心障礙聯盟,2018年7月10日,載於:https://www.enable.org.tw/issue/item_detail/634
    金管會,金管會對於國內網路借貸平臺發展現況之說明,金融監督管理委員會,2016年4月14日,載於:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201604140004&toolsflag=Y&dtable=News
    金管會,金管會發布「網路借貸平臺業務事業指導原則」,金融監督管理委員會,2023年10月19日,載於:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202310190002&dtable=News
    金融科技發展與創新中心,金管會公布金融業運用人工智慧(AI)之核心原則及政策,金融監督管理委員會,2023年10月17日,載於:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202310170002&dtable=News
    金融科技發展與創新中心,金管會發布「金融業運用人工智慧(AI)指引」,金融監督管理委員會,2024年6月20日,載於:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202406200001&dtable=News
    俞仲慈,華府聯邦法官下臨時禁制令 阻川普解散消費者金融保護局,世界新聞網,2025年3月29日,載於:https://www.worldjournal.com/wj/story/121468/8641268
    孫彬訓,P2P平台監管 陳冲籲快決定主管機關,工商時報,2023年8月3日,載於:https://www.ctee.com.tw/news/20230803700044-430301
    徐敏宸,川普政府癱瘓聯邦消費者保護機構,台灣英文新聞,2025年2月10日,載於:https://www.taiwannews.com.tw/zh/news/6033818
    馬瑞璿,AI基本法誰管?藍綠立委意見不同 但主張設置專門單位擬定國家AI策略,經濟日報,2025年5月14日,載於:https://money.udn.com/money/story/5613/8738780
    財團法人金融聯合徵信中心,個人信用評分組成,2023年6月28日,載於:https://www.jcic.org.tw/main_ch/docDetail.aspx?uid=1555&pid=1555&docid=629
    張瑞雄,金融科技停看聽-普惠金融有前景 最後一哩待突破,中時新聞網,2024年1月22日,載於:https://www.chinatimes.com/newspapers/20240122000123-260209?chdtv
    許夷雯,P2P公會上路!平台不再隱藏風險 投資更透明,經濟日報,2025年5月8日,載於:https://money.udn.com/money/story/5635/8726689
    許雅昱,【側記】隱私權作為民主的基石:全民指紋檔、健保資料庫、人工智慧的挑戰-邱文聰:如何撐起資訊自主空間?,台灣人權促進會,2024年5月27日,載於:https://www.tahr.org.tw/news/3535?fbclid=IwY2xjawL6rDZleHRuA2FlbQIxMABicmlkETFSTGNQeDVBQkl2M3BJWWhkAR7jXZvovHC0XGc743uwEHKaHOqsnBhtcRflBQkFuX9Xr-WPXlmAq9466CGIEw_aem_sIzGaXOGbMEDzHAp8mH40w
    許靜之,借貸不一定要財力證明!金管會通過這家銀行「AI模型評估月收入」,誰適用?規則一次懂,數位時代,2024年8月9日,載於:https://www.bnext.com.tw/article/80069/fsc-fintech-sandbox-first-case
    陳曉莉,具爭議的加州AI法案能否通過將在9月底見真章,iThome,2024年9月16日,載於:https://www.ithome.com.tw/news/165036
    國家科學及技術委員會,國家科學及技術委員會公告:預告制定「人工智慧基本法」草案,公共政策網路參與平臺,2024年7月15日,載於:https://join.gov.tw/policies/detail/4c714d85-ab9f-4b17-8335-f13b31148dc4
    黃于庭,金管會將協助訂定自律規範 延宕兩年 P2P公會正式成立,工商時報,2025年4月26日,載於:https://www.ctee.com.tw/news/20250426700105-439901
    普匯金融科技,金融科技是盲目追從,還是潮流所趨?—美國金融科技獨角獸Upstart是飆股還是韭菜?,2022年3月28日,載於:https://www.influxfin.com/articlepage/Upstart-fintech-loan
    詹芳書,無國界歧視的金融服務,今周刊,2024年12月5日,載於:https://esg.businesstoday.com.tw/article/category/180688/post/202412050001/%E6%95%99%E5%8B%99%E9%95%B7%E8%A7%80%E9%BB%9E%EF%BC%9A%E8%A2%AB%E9%8A%80%E8%A1%8C%E8%A7%A3%E7%B4%84%E5%BE%8C%EF%BC%8C%E6%88%91%E5%9C%A8%E6%8C%89%E6%91%A9%E5%BA%97%E7%9C%8B%E8%A6%8B%E6%99%AE%E6%83%A0%E9%87%91%E8%9E%8D%E7%9C%9F%E8%AB%A6
    臧正運,普惠金融的劃時代意涵--臺灣的省思與對策,台灣新社會智庫,2024年8月13日,載於:http://www.taiwansig.tw/index.php/%E6%94%BF%E7%AD%96%E5%A0%B1%E5%91%8A/%E7%A7%91%E6%8A%80%E7%B6%93%E6%BF%9F/8994-%E6%99%AE%E6%83%A0%E9%87%91%E8%9E%8D%E7%9A%84%E5%8A%83%E6%99%82%E4%BB%A3%E6%84%8F%E6%B6%B5-%E8%87%BA%E7%81%A3%E7%9A%84%E7%9C%81%E6%80%9D%E8%88%87%E5%B0%8D%E7%AD%96
    廖珮君、楊筱筠,用 AI 核貸輕量沙盒首例 方便財務小白借錢 最快月底前上路,經濟日報,2024年8月9日,載於:https://money.udn.com/money/story/5613/8149874
    鄧天心,Google、Meta科技巨頭「喊卡」無效 歐盟AI新規如期上路,科技島,2025年7月7日,載於:https://www.technice.com.tw/issues/ai/180863/
    潘后儀,【座談會/報導】AI人工智慧大哉問:選「A」還是選「B」,說資安新聞網,2025年3月27日,載於:https://cybersecurenews.com.tw/news-edit-135/2/
    顧長芸,全美第一個規範AI用於影像面試之法案伊利諾州的人工智慧影像面試法(AIVIA),中研院法律所資訊法中心,2019年10月4日,載於:https://infolaw.iias.sinica.edu.tw/?p=1962

    二、英文文獻
    專書
    Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms. Cambridge, MA: The MIT Press.
    Solove, Daniel J., and Paul M. Schwartz. 2024. Privacy Law Fundamentals. Portsmouth, New Hampshire: International Association of Privacy Professionals.

    專書論文
    Custers, Bart. 2013. Data Dilemmas in the Information Society: Introduction and Overview. Pp. 3-26 in Discrimination and Privacy in the Information Society, edited by Bart Custers, Toon Calders, Bart Schermer and Tal Zarsky. Heidelberg: Springer.
    Langenbucher, Katja. 2022. AI credit scoring and evaluation of creditworthiness– a test case for the EU proposal for an AI Act. Pp.362-386 in Continuity and Change– How the Challenges of Today Prepare the Ground for Tomorrow, European Central Bank, ECB Legal Conference 2021. Luxembourg: Publications Office of the European Union.
    Rebelo, Diogo Morgado, and Filipa Campos Ferreira. 2022. AI-based consumer’s creditworthiness assessment: era of automation, future of scoring and the EU policymaking on automated decision-making. Pp.77-105 in E.Tec Yearbook -Industry 4.0: Legal Challenges, edited by Sónia Moreira. Braga: Research Centre for Justice and Governance (JusGov).

    期刊論文
    Aggarwal, Nikita. 2021. The Norms of Algorithmic Credit Scoring. Cambridge Law Journal 80(1):42-73.
    Ahmed, Shehnaz. 2020. Alternative Credit Scoring – A Double Edged Sword. Journal of Indian Law and Society 11(2):1-23.
    Aza, Asymina. 2024. Scores as Decisions? Article 22 GDPR and the Judgment of the CJEU in SCHUFA Holding (Scoring) in the Labour Context. Industrial Law Journal 53:840-858.
    Bakare, Seun Solomon , Adekunle Oyeyemi Adeniyi, Chidiogo Uzoamaka Akpuokwe, and Nkechi Emmanuella Eneh. 2024. Data Privacy Laws and Compliance: A Comparative Review of the EU GDPR and USA Regulations. Computer Science and IT Research Journal 5(3):528-543.
    Balance, Joshua, Robert Clifford, and Daniel Shoag. 2020. “No more credit score”: Employer credit check bans and signal substitution. Labour Economics 63:1-58.
    Barocas, Solon and Andrew D. Selbst. 2016. Big Data’s Disparate Impact. California Law Review 104:671-732.
    Bello, Oluwabusayo Adijat. 2023. Machine Learning Algorithms for Credit Risk Assessment: An Economic and Financial Analysis. International Journal of Management Technology 10(1):109-133.
    Berg, Tobias, Valentin Burg, Ana Gombovic, and Manju Puri. 2020. On the Rise of FinTechs: Credit Scoring Using Digital Footprints. The Review of Financial Studies 33:2845-2897.
    Bicharra Garcia, Ana Cristina, Marcio Gomes Pinto Garcia, and Roberto Rigobon. 2023. Algorithmic discrimination in the credit domain: what do we know about it?. AI and Society 39:2059-2098.
    Bruckner, Matthew A. 2018. The Promise and Perils of Algorithmic Lenders’ Use of Big Data. Chicago-Kent Law Review 93(1):3-60.
    de Bruin, Ruben. 2022. A Comparative Analysis of the EU and U.S. Data Privacy Regimes and the Potential for Convergence. Hastings Science and Technology Law Journal 13:127-165.
    Buolamwini, Joy, and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research 81:77-91.
    Cairns, John W. 1976. Credit Equality Comes to Women: An Analysis of the Equal Credit Opportunity Act. San Diego Law Review 13:960-977.
    Cherednychenko, Olha O. 2021. The proposal for a new EU Consumer Credit Directive: towards responsible lending in the digital age?. Law and Financial Markets Review 15:183-206.
    Cherednychenko, Olha O. 2024. On the Bumpy Road to Responsible Lending in the Digital Marketplace: The New EU Consumer Credit Directive. Journal of Consumer Policy 47:241-270.
    Chopra, Sahiba. 2021. Current Regulatory Challenges in Consumer Credit Scoring Using Alternative Data-Driven Methodologies. Vanderbilt Journal of Entertainment and Technology Law 23(3):625-648.
    D’Alessandro, Brian, Cathy O’Neil, and Tom LaGatta. 2017. Conscientious Classification: A Data Scientist’s Guide to Discrimination-Aware Classification. Big Data 5(2):120-134.
    Davaadorj, Zagdbazar. 2024. The influence of the digital divide on peer-to-peer lending outcomes. Finance Research Letters 61:1-12.
    Dong, Gang, Kin Keung Lai, and Jerome Yen. 2010. Credit scorecard based on logistic regression with random coefficients. Procedia Computer Science 1(1):2463-2468.
    Editorial Board, Minnesota Law Review. 1972. The Fair Credit Reporting Act. Minnesota Law Review 56:819-841.
    Favaretto, Maddalena, Eva De Clercq, and Bernice Simone Elger. 2019. Big Data and discrimination: perils, promises and solutions. A systematic review. Journal of Big Data 6:1-27.
    Gillis, Talia B. and Jann Spiess. 2019. Big Data and Discrimination. University of Chicago Law Review 86(2):459-487.
    Goodman, Bryce, and Seth Flaxman. 2017. European Union Regulations on Algorithmic Decision Making and a “Right to Explanation”. AI Magazine 38(3):50-57.
    Griffith, Michael A. 2023. AI Lending and ECOA: Avoiding Accidental Discrimination. North Carolina Banking Institute 27:349-381.
    Henry, Judith B. 1977. Equal Credit Opportunity Act Amendments of 1976. University of Richmond Law Review 12:203-220.
    Hurley, Mikella, and Julius Adebayo. 2016. Credit Scoring in the Era of Big Data. Yale Journal of Law and Technology 18:148-216.
    Jagtiani, Julapa, and Catherine Lemieux. 2019. The roles of alternative data and machine learning in fintech lending: Evidence from the LendingClub consumer platform. Financial Management 48(4):1009-1029.
    Jariwala, Mayur. 2024. A Comparative Analysis of the EU AI Act and the Colorado AI Act: Regulatory Approaches to Artificial Intelligence Governance. International Journal of Computer Applications 186:23-29.
    Laux, Johann. 2023. Institutionalised distrust and human oversight of artifcial intelligence: towards a democratic design of AI governance under the European Union AI Act. AI and Society 39(6):2853-2866.
    Lazcoz, Guillermo, and Paul de Hert. 2023. Humans in the GDPR and AIA Governance of Automated and Algorithmic Systems. Essential Pre-Requisites against Abdicating Responsibilities. Computer Law and Security Review 50:1-20.
    Lerman, Jonas. 2013. Big Data and Its Exclusions. Stanford Law Review Online 66:55-63.
    Linarelli, John. 2021. Equality and Access to Credit: A Social Contract Framework. Law and Contemporary Problems 84:165-180.
    Lowry, Stella, and Gordon Macpherson. 1988. A Blot on the Profession. British Medical Journal 296:657-658.
    Lui, Alison T., George Lamb, and Lola Durodola. 2025. A right to explanation for algorithmic credit decisions in the UK. Law, Innovation and Technology 17:289-317.
    Metikoš, Ljubiša, and Jef Ausloos. 2025. The Right to an Explanation in Practice: Insights from Case Law for the GDPR and the AI Act. Law, Innovation and Technology 17:1-36.
    Montagnani, Maria Lillà, and Carolina Paulesu. 2022. Towards an Ecosystem for Consumer Protection in the Context of AI-based Credit Scoring. European Business Law Review 33(4):557-580.
    Neuwirth, Rostam J. 2023. Prohibited artificial intelligence practices in the proposed EU artificial intelligence act (AIA). Computer Law and Security Review 48:1-14.
    Njuguna, Rebecca and Karen Sowon. 2021. Poster: A Scoping Review of Alternative Credit Scoring Literature. COMPASS '21: Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies 437-444.
    Rohner, Ralph J. 1979. Equal Credit Opportunity Act. The Business Lawyer 34:1423-1433.
    Selbst, Andrew D. 2017. Disparate Impact in Big Data Policing. Georgia Law Review 52:109-195.
    Selbst, Andrew D., and Julia Powles. 2017. Meaningful Information and the Right to Explanation. International Data Privacy Law 7(4):233-242.
    Spindler, Gerald. 2021. Algorithms, credit scoring, and the new proposals of the EU for an AI Act and on a Consumer Credit Directive. Law and Financial Markets Review 15:239-261.
    Strahilevitz, Lior Jacob. 2008. Privacy Versus Antidiscrimination. University of Chicago Law Review 75(1):363-381.
    Taylor, Winnie F. 2018. The ECOA and Disparate Impact Theory: A Historical Perspective. Journal of Law and Policy 26:575-635.
    Toh, Ying Lei. 2024. Addressing Traditional Credit Scores as a Barrier to Accessing Affordable Credit. Economic Review - Federal Reserve Bank of Kansas City 108(3):21-42.
    Venkatesh, Pooja, and Preeti Desai. 2025. The Role of AI and ML in Alternative Credit Scoring in Fintech Lending. Journal of Information Systems Engineering and Management City 10:16-22.
    Vida Fernández, José. 2023. Artificial Intelligence in Government: Risks and Challenges of Algorithmic Governance in the Administrative State. Indiana Journal of Global Legal Studies 30(1):65-95.
    Wachter, Sandra, Brent Mittelstadt, and Luciano Floridi. 2017. Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Protection Regulation. International Data Privacy Law 7:76-99.
    Wang, Xukang, Ying Cheng Wu, Xueliang Ji and Hongpeng Fu. 2024. Algorithmic discrimination: examining its types and regulatory measures with emphasis on US legal practices. Frontiers in Artificial Intelligence 7:1-12.
    Wei, Yanhao, Pinar Yildirim, Christophe Van den Bulte, and Chrysanthos Dellarocas. 2016. Credit Scoring with Social Network Data. Marketing Science 35(2):234-258.
    Wu, Jason Jia-Xi. 2024. Algorithmic Fairness in Consumer Credit Underwriting: Towards a Harm-Based Framework for AI Fair Lending. Berkeley Business Law Journal 21:65-142.
    Wulf, Alexander J., and Ognyan Seizov. 2024. Please understand we cannot provide further information”: Evaluating content and transparency of GDPR-mandated AI disclosures. AI and Society 39(1):235-256.
    Zarsky, Tal Z. 2014. Understanding Discrimination in the Scored Society. Washington Law Review 89(4):1375-1412.

    網路資料
    Alan Kaplinsky, CFPB issues new no-action letter to Upstart, JDSUPRA (Dec. 10, 2020), https://www.jdsupra.com/legalnews/cfpb-issues-new-no-action-letter-to-31837/
    Alex Engler, The EU and U.S. diverge on AI regulation: A transatlantic comparison and steps to alignment, BROOKINGS (Apr. 25, 2023), https://www.brookings.edu/articles/the-eu-and-us-diverge-on-ai-regulation-a-transatlantic-comparison-and-steps-to-alignment/
    Alexandra George, Thwarting bias in AI systems, Carnegie Mellon University College of Engineering (Dec. 11, 2018), https://engineering.cmu.edu/news-events/news/2018/12/11-datta-proxies.html
    Alexei Alexandrov, Alyssa Brown, and Samyak Jain, Looking at credit scores only tells part of the story – cashflow data may tell another part, CFPB (July 26, 2023), https://www.consumerfinance.gov/about-us/blog/credit-scores-only-tells-part-of-the-story-cashflow-data/
    Alison Griswold, A Group of Investors Is Buying A Stake In The Next Generation Of Geniuses, Business Insider (Feb. 22, 2014), https://www.businessinsider.com/upstart-and-pave-investing-in-human-capital-2014-2
    Alison Griswold, Upstart Pulls Income Share Agreements in Favor of More Traditional Loans, SLATE (May 09, 2014), https://slate.com/business/2014/05/upstart-pulls-income-share-agreements-in-favor-of-traditional-loans.html
    Anamika Thanda, What is Logistic Regression? A Beginner's Guide, CAREERFOUNDRY (Nov. 11, 2023), https://careerfoundry.com/en/blog/data-analytics/what-is-logistic-regression/#what-are-the-advantages-and-disadvantages-of-using-logistic-regression
    Angel Lin, FCRA and Find Out: How Online Lenders Use Alternative Credit Scores to Prey on Communities of Color, The Greenlining Institute (Apr. 10, 2025), https://greenlining.org/2025/fcra-and-find-out/
    Article 29 Data Protection Working Party, Guidelines on Automated Individual Decision-Making and Profiling for the Purpose of Regulation 2016/769 (WP251rev.01), 21 (Feb. 6, 2018), https://ec.europa.eu/newsroom/article29/items/612053/en
    Australian Human Rights Commission, Historical bias in AI systems, Australian Human Rights Commission (Nov. 24, 2020), https://humanrights.gov.au/about/news/media-releases/historical-bias-ai-systems
    Ben Leder, How To Use ML for Credit Scoring & Decisioning, phData (Aug. 24, 2023), https://www.phdata.io/blog/how-to-use-ml-for-credit-scoring-decisioning/
    Blake Ellis, Millions without credit scores not so risky after all, CNN Money (Aug. 14, 2013), https://money.cnn.com/2013/08/14/pf/credit-scores
    Brian Zahn, Connecticut lawmaker leading national effort for states to adopt Articial Intelligence regulations, New Haven Register (Oct. 5, 2024), https://www.nhregister.com/news/article/ct-artificial-intelligence-regulations-law-19810755.php
    California Privacy Protection Agency, A New Landmark for Consumer Control Over Their Personal Information: CPPA Proposes Regulatory Framework for Automated Decision-making Technology, CPPA (Nov. 27, 2023), https://cppa.ca.gov/announcements/2023/20231127.html
    CFPB, Policy on No-Action Letters; Information Collection, Federal Register (Feb. 22, 2016), https://www.federalregister.gov/documents/2016/02/22/2016-02390/policy-on-no-action-letters-information-collection
    CFPB, Request for Information Regarding Use of Alternative Data and Modeling Techniques in the Credit Process, Federal Register (Feb. 21, 2017), https://www.federalregister.gov/documents/2017/02/21/2017-03361/request-for-information-regarding-use-of-alternative-data-and-modeling-techniques-in-the-credit
    CFPB, CFPB Announces First No-Action Letter to Upstart Network, CFPB (Sep. 14, 2017), https://www.consumerfinance.gov/about-us/newsroom/cfpb-announces-first-no-action-letter-upstart-network/
    CFPB, Policy on No-Action Letters, Federal Register (Sep. 13, 2019), https://www.federalregister.gov/documents/2019/09/13/2019-19763/policy-on-no-action-letters
    CFPB, CFPB Clarifies That Discrimination by Lenders on the Basis of Sexual Orientation and Gender Identity Is Illegal, CFPB (Mar. 09, 2021), https://www.consumerfinance.gov/about-us/newsroom/cfpb-clarifies-discrimination-by-lenders-on-basis-of-sexual-orientation-and-gender-identity-is-illegal/
    CFPB, Consumer Financial Protection Circular 2022-03, CFPB (May 26, 2022), https://www.consumerfinance.gov/compliance/circulars/circular-2022-03-adverse-action-notification-requirements-in-connection-with-credit-decisions-based-on-complex-algorithms/
    CFPB, CFPB Acts to Protect the Public from Black-Box Credit Models Using Complex Algorithms, CFPB (May 26, 2022), https://www.consumerfinance.gov/about-us/newsroom/cfpb-acts-to-protect-the-public-from-black-box-credit-models-using-complex-algorithms/
    CFPB, Consumer Financial Protection Circular 2023-03, CFPB (Sep. 19, 2023), https://www.consumerfinance.gov/compliance/circulars/circular-2023-03-adverse-action-notification-requirements-and-the-proper-use-of-the-cfpbs-sample-forms-provided-in-regulation-b/
    CFPB, CFPB Comment on Request for Information on Uses, Opportunities, and Risks of Artificial Intelligence in the Financial Services Sector, CFPB (Aug. 12, 2024), https://www.consumerfinance.gov/about-us/newsroom/cfpb-comment-on-request-for-information-on-uses-opportunities-and-risks-of-artificial-intelligence-in-the-financial-services-sector /
    CFPB, Protecting Americans from Harmful Data Broker Practices (Regulation V), Regulations.gov (Dec. 13, 2024), https://www.regulations.gov/document/CFPB-2024-0044-0001
    Chanley T. Howell and Leighton B. R. Allen, Decoding California’s Recent Flurry of AI Laws, FOLEY (Oct. 4, 2024), https://www.foley.com/insights/publications/2024/10/decoding-california-recent-ai-laws/
    Chen Chen, Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations, STLI (Aug. 18, 2023), https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=168&d=9051#_ftn6
    Christopher Dancy, The White House’s ‘AI Bill of Rights’ outlines five principles to make artificial intelligence safer, more transparent and less discriminatory, THE CONVERSATION (Oct. 28, 2022), https://theconversation.com/the-white-houses-ai-bill-of-rights-outlines-five-principles-to-make-artificial-intelligence-safer-more-transparent-and-less-discriminatory-192003
    Congressional Research Service, Alternative Data in Financial Services, CRS (Aug. 27, 2020), https://www.everycrsreport.com/files/2020-08-27_IF11630_24410ca2dbaaaa7fb2d1c09c8e13f1ee02a0eb59.pdf
    Congressional Research Service, Automation, Artificial Intelligence, and Machine Learning in Consumer Lending, CRS (May 10, 2023), https://sgp.fas.org/crs/misc/IF12399.pdf
    Corliss Hill, Inclusive Finance: The Limitations of Traditional Credit Scores, Experian (Dec. 6, 2022), https://www.experian.com/blogs/insights/inclusive-finance/
    Darren M. Welch and Stuart D. Levi, CFPB Comments on AI Offer Insights for Consumer Finance Industry, Skadden (Aug. 23, 2024), https://www.skadden.com/insights/publications/2024/08/cfpb-comments-on-artificial-intelligence
    Data Guidance, Connecticut: 2024's AI Bill SB2 - State level AI protections, DG (Jan. 21, 2025), https://www.dataguidance.com/opinion/connecticut-2024s-ai-bill-sb2-state-level-ai
    Elizabeth Guevara, CFPB Proposes Rule to Crack Down on Data Brokerage, INVESTOPEDIA (Dec. 3, 2024), https://www.investopedia.com/embargo-cfpb-proposes-rule-to-crack-down-on-data-brokerage-8754193
    European Commission, Legal provisions of COM(2020)963 - Implementation of Directive 2008/48/EC on credit agreements for consumers, EU Monitor (Nov. 5, 2020), https://www.eumonitor.eu/9353000/1/j4nvhdfcs8bljza_j9vvik7m1c3gyxp/vldijm5nj7x9
    European Commission, Evaluation of the Consumer Credit Directive, European Commission (Nov. 5, 2020), https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/1844-Evaluation-of-the-Consumer-Credit-Directive_en
    European Commission, Shaping Europe’s Digital Future: AI Act, European Commission (Feb. 18, 2025), https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
    European Union Agency for Fundamental Rights, Data quality and artificial intelligence – mitigating bias and error to protect fundamental rights, FRA (June 11, 2019), https://fra.europa.eu/en/publication/2019/data-quality-and-artificial-intelligence-mitigating-bias-and-error-protect
    Executive Office of the President, National Science and Technology Council Committee on Technology, Preparing for the Future of Artificial Intelligence (Oct. 12, 2016), https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
    Experian, Meet the 5 million ‘credit invisible’ Brits still at risk of exclusion from the financial system (Mar. 21, 2022), https://www.experianplc.com/newsroom/press-releases/2022/meet-the-5-million-credit-invisible-brits-still-at-risk-of-exclusion-from-the-financial-system
    FDIC, Interagency Statement on the Use of Alternative Data in Credit Underwriting, FDIC (Dec. 3, 2019), https://www.fdic.gov/news/speeches/2019/spdec0319.html
    FDIC, FDIC Consumer Compliance Examination Manual – December 2024, IV-1.2, https://www.fdic.gov/resources/supervision-and-examinations/consumer-compliance-examination-manual/documents/4/iv-1-1.pdf
    FTC, Big Data: A Tool for Inclusion or Exclusion?, FTC (2016) https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf
    Future Learn, Dealing with bias in AI, FUTURE LEARN, https://www.futurelearn.com/info/courses/how-artificial-intelligence-can-support-healthcare/0/steps/277408
    Geeksforgeeks, What is a neural network?, (Jan. 3, 2024), https://www.geeksforgeeks.org/machine-learning-algorithms/
    Geeksforgeeks, Random Forest Algorithm in Machine Learning, (July 12, 2024), https://www.geeksforgeeks.org/machine-learning-algorithms/
    Geeksforgeeks, Machine Learning Algorithms, (Sep. 3, 2024), https://www.geeksforgeeks.org/machine-learning-algorithms/
    George Hammond and Hannah Murphy, OpenAI joins opposition to California AI safety bill, FINANCIAL TIMES (Aug. 22, 2024), https://www.ft.com/content/bdba5c71-d4fe-4d1f-b4ab-d964963375c6
    Ian Appel and Aldo Sesia, Upstart’s Upshot: Is Fintech Lending Fair?, Darden Business Publishing (Oct. 4, 2023), https://store.darden.virginia.edu/upstarts-upshot-is-fintech-lending-fair
    IBM, What is data quality, IBM, https://www.ibm.com/topics/data-quality
    ICF, Study on Possible Impacts of a Revision of the CCD: Final Report, European Commission (May 2021), https://commission.europa.eu/system/files/2021-06/study_possible_impacts_ccd_revision_main_web.pdf
    Irfan Mehmood and Kamran Mahroof, California’s governor blocked landmark AI safety laws. Here’s why it’s such a key ruling for the future of AI worldwide, THE CONVERSATION (Oct. 23, 2024), https://theconversation.com/californias-governor-blocked-landmark-ai-safety-laws-heres-why-its-such-a-key-ruling-for-the-future-of-ai-worldwide-240182
    Jeffery Dastin, Insight - Amazon scraps secret AI recruiting tool that showed bias against women, REUTERS (Oct. 11, 2018), https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-womenidUSKCN1MK08G/
    John J. Rolecki and Amy L. Baddley, Emerging Trends in AI Governance: Insights from State-Level Regulations Enacted in 2024, The National Law Review (Jan. 6, 2025), https://natlawreview.com/article/emerging-trends-ai-governance-insights-state-level-regulations-enacted-2024#google_vignette
    Jon Xavier, Why Upstart abandoned education crowdfunding to become a more traditional lender, Silicon Valley Business Journal (May 23, 2014), https://www.bizjournals.com/sanjose/news/2014/05/23/why-upstart-abandoned-education-crowdfunding-to.html
    Judith Arnal, Unfit for purpose? The legal maze of credit scoring under EU law, CEPS (May 28, 2025), https://www.ceps.eu/ceps-publications/unfit-for-purpose-the-legal-maze-of-credit-scoring-under-eu-law/
    Kai Ngu, My family came to the US to start a new life. An obscure credit score held us back, The Guardian (Feb. 17, 2023), https://www.theguardian.com/money/commentisfree/2023/feb/17/fico-credit-scores-immigrants-expansion
    Kate Crawford, The Hidden Biases in Big Data, Harvard Business Review (Apr. 2, 2013), https://hbr.org/2013/04/the-hidden-biases-in-big-data
    Kate Crawford, Think Again: Big Data, Foreign Policy (May 10, 2013), https://foreignpolicy.com/2013/05/10/think-again-big-data/
    Keely Quinlan, Connecticut Senate passes unique bill on private sector AI use, STATESCOOP (Apr. 25, 2024), https://statescoop.com/connecticut-senate-ai-legislation-private-sector-2024/
    LaToya Irby, How Cash-Only Spending Affects Your FICO Score, MyFICO (July 25, 2023), https://www.myfico.com/credit-education/blog/cash-fico-score
    Laurel Wamsley, Federal judge prevents Trump administration from dismantling CFPB, NPR (Mar. 28, 2025), https://www.npr.org/2025/03/28/nx-s1-5315118/cfpb-shuttering-trump-doge
    Lorenzo Gugliotta, Towards a right to explanation for automated (and AI-based) decisions? Anticipating the upcoming judgment in C-634/21 OQ v SCHUFA, KU LEUVEN (Nov. 28, 2023), https://www.law.kuleuven.be/ai-summer-school/blogpost/Blogposts/SCHUFA-right-to-explanation
    Louisiana State University, AI and Alternative Data Could Help Millions Gain Access to Credit, LSU (Sep. 20, 2022), https://www.lsu.edu/mediacenter/news/2022/09/wfl_lending.php
    Mallory Culhane, Two unlikely states are leading the charge on regulating AI, POLITICO (May 15, 2024), https://www.politico.com/news/2024/05/15/ai-tech-regulations-lobbying-00157676
    Marc S. Martin, Sean P. Belding, Samuel Klein and Tyler D. Robbins, States Begin To Regulate AI in Absence of Federal Legislation, Perkins Coie (May 22, 2024), https://perkinscoie.com/insights/update/states-begin-regulate-ai-absence-federal-legislation
    Marie-Astrid Huemer, Revision of Directive 2008/48/EC on credit agreements for consumers, European Parliament (June 3, 2021), https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)694204
    Michael Huertas and Christoph Andreas Weber, Consumer Credit Directive 2.0 – More consumer protection, higher regulatory burden? A view from Germany, PWC (Feb. 05, 2024), https://legal.pwc.de/en/news/articles/consumer-credit-directive-2-0-more-consumer-protection-higher-regulatory-burden-a-view-from-germany
    MyFICO, What’s in my FICO Scores?, MyFICO, https://www.myfico.com/credit-education/whats-in-your-credit-score
    MyFICO, The History of the FICO Score, MyFICO (Aug. 21, 2018), https://www.myfico.com/credit-education/blog/history-of-the-fico-score
    Natalie Campisi, From Inherent Racial Bias to Incorrect Data—The Problems With Current Credit Scoring Models, Forbes Advisor (Feb. 26, 2021), https://www.forbes.com/advisor/credit-cards/from-inherent-racial-bias-to-incorrect-data-the-problems-with-current-credit-scoring-models/
    Nisha Talagala, California’s New AI Laws - What You Should Know, Forbes (Oct. 14, 2024), https://www.forbes.com/sites/nishatalagala/2024/10/14/californias-new-ai-lawswhat-you-should-know/
    NIST, Artificial Intelligence Risk Management Framework (AI RMF 1.0) (Jan. 2023), https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
    NIST, Towards a Standard for Identifying and Managing Bias in Artificial Intelligence (Mar. 2022), https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf
    NIST, The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals (May 21, 2024), https://www.nist.gov/system/files/documents/2024/05/21/AISI-vision-21May2024.pdf
    Nourhan Khaled, Credit Scoring Explained: Challenges & Pitfalls, Synapse Analytics (Apr. 18, 2022), https://www.synapse-analytics.io/post/credit-scoring-explained-challenges-pitfalls
    Office of Management and Budget, Memorandum for the Heads of Executive Department and Agencies: Guidance for Regulation of Artificial Intelligence Applications (Nov. 17, 2020), https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf
    Office of Public Affairs, At the Direction of President Biden, Department of Commerce to Establish U.S. Artificial Intelligence Safety Institute to Lead Efforts on AI Safety, U.S. Department of Commerce (Nov. 1, 2023), https://www.commerce.gov/news/press-releases/2023/11/direction-president-biden-department-commerce-establish-us-artificial
    OPPU, When Were Credit Scores Invented? A Brief Look at History, OPPU (July 27, 2023), https://www.opploans.com/oppu/building-credit/a-brief-history-of-credit-scores/
    Quentin Hardy, Just the Facts. Yes, All of Them., The New York Times (Mar. 24, 2012), https://www.nytimes.com/2012/03/25/business/factuals-gil-elbaz-wants-to-gather-the-data-universe.html?searchResultPosition=1
    Risto Uuk, The EU AI Act Newsletter #81: Pause the AI Act?, The EU AI Act Newsletter (July 8, 2025), https://artificialintelligenceact.substack.com/p/the-eu-ai-act-newsletter-81-pause
    Robert T. Quackenboss and Reilly C. Moore, Virginia Governor Vetoes AI Bill As States Struggle to Approve Regulations, The National Law Review (Apr. 1, 2025), https://natlawreview.com/article/virginia-governor-vetoes-ai-bill-states-struggle-approve-regulations
    Sean Trainor, The Long, Twisted History of Your Credit Score, TIME (July 22, 2015), https://time.com/3961676/history-credit-scores/
    Sofia Gracias, Comparing the EU AI Act to Proposed AI-Related Legislation in the US, The University of Chicago Business Law Review, https://businesslawreview.uchicago.edu/print-archive/comparing-eu-ai-act-proposed-ai-related-legislation-us
    SME Finance Working Group, Alternative Data for Credit Scoring, AFI (2025), https://www.afi-global.org/wp-content/uploads/2025/02/Alternative-Data-for-Credit-Scoring.pdf
    Stanford University Human-Centered Artificial Intelligence, Artificial Intelligence Index Report 2024, https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
    The CFPB Office of Research, Data Point: Credit Invisibles, CFPB (May 05, 2015), https://www.consumerfinance.gov/data-research/research-reports/data-point-credit-invisibles/
    The White House, Initial Rescissions of Harmful Executive Orders and Actions, The White House (Jan. 20, 2025), https://www.whitehouse.gov/presidential-actions/2025/01/initial-rescissions-of-harmful-executive-orders-and-actions/
    The White House, Removing Barriers to American Leadership in Artificial Intelligence, The White House (Jan. 23, 2025), https://www.whitehouse.gov/presidential-actions/2025/01/removing-barriers-to-american-leadership-in-artificial-intelligence/
    Upstart, Our Story, https://www.upstart.com/our-story
    Upstart, Request for a No-Action Letter, https://files.consumerfinance.gov/f/documents/201709_cfpb_upstart-no-action-letter-request.pdf
    Upstart, Upstart Receives First No-Action Letter Issued by Consumer Financial Protection Bureau, Upstart (Sep. 14, 2017), https://www.upstart.com/news/upstart-receives-first-no-action-letter-issued-consumer-financial-protection-bureau
    U.S. Department of Justice, Section VII- Proving Discrimination- Disparate Impact, https://www.justice.gov/crt/fcs/T6Manual7#D
    Vance Cariaga, Artificial Intelligence Based Credit Scoring: How AI Could Set Your Credit Score, Yahoo Finance (Apr. 26, 2024), https://finance.yahoo.com/news/artificial-intelligence-based-credit-scoring-160058362.html
    VantageScore, The Complete Guide to Your VantageScore, VantageScore, https://www.vantagescore.com/the-complete-guide-to-your-vantagescore/
    White House Office of Science and Technology Policy, Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People (Oct. 2022), https://www.govinfo.gov/content/pkg/GOVPUB-PREX23-PURL-gpo193638/pdf/GOVPUB-PREX23-PURL-gpo193638.pdf
    Whitney J. Jackson and Anne R. Yuengert, Illinois Civil Rights Protection Goes High-Tech: Illinois Human Rights Act Expanded to Include AI Regulation, The National Law Review (Aug. 15, 2024), https://natlawreview.com/article/illinois-civil-rights-protection-goes-high-tech-illinois-human-rights-act-expanded
    World Bank Group, Financial Inclusion, https://www.worldbank.org/en/topic/financialinclusion/overview
    World Bank Group, Credit Scoring Approached Guidelines, World Bank Group (Apr. 02, 2020), https://thedocs.worldbank.org/en/doc/935891585869698451-0130022020/CREDIT-SCORING-APPROACHES-GUIDELINES-FINAL-WEB

    其他
    Agarwal, Sumit, Shashwat Alo, Pulak Ghosh, and Sudip Gupta. 2019. Financial Inclusion and Alternate Credit Scoring: Role of Big Data and Machine Learning in Fintech. Indian School of Business. Available at SSRN: https://ssrn.com/abstract=3507827.
    Dauda, Iliyasu Iliyasu. 2021. A Comparison Between Enforcement of the European Union General Data Protection Regulation (GDPR) and the United States Privacy Regulations. Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4642431.
    Langenbucher, Katja. 2023. Consumer Credit in the Age of AI – Beyond Anti-discrimination Law. European Corporate Governance Institute - Law Working Paper No. 663/2022, LawFin Working Paper No. 42. Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4275723.
    Leslie, David. 2020. Explaining Decisions Made with AI. Available at SSRN: https://ssrn.com/abstract=4033308.
    Di Maggio, Marco, Dimuthu Ratnadiwakara, and Don Carmichael. 2021. Invisible Primes: Fintech Lending with Alternative Data. Harvard Business School Working Paper No. 22-024, https://www.hbs.edu/ris/Publication%20Files/22-024_80dc9115-69cc-4564-99c6-3a937f275d31.pdf
    Reis, Thereza Balliester. 2021. What is financial inclusion? A critical review. SOAS Department of Economics Working Paper No. 246, https://www.soas.ac.uk/sites/default/files/2022-10/economics-wp246.pdf
    描述: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    109364215
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109364215
    資料類型: thesis
    顯示於類別:[科技管理與智慧財產研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    421501.pdf5090KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋