English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118260/149296 (79%)
Visitors : 77301266      Online Users : 134
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/159089
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159089


    Title: 兩階段動態團體推薦系統:從個人到團體決策的動態適應機制
    A Two-Stage Dynamic Group Recommendation System: Dynamic Adaptation from Individual to Group Decision-Making
    Authors: 蔡凱亘
    Tsai, Kai-Hsuan
    Contributors: 林怡伶
    Lin, Yi-Ling
    蔡凱亘
    Tsai, Kai-Hsuan
    Keywords: 團體推薦
    動態機制
    團體決策
    Group Recommendation
    Dynamic Mechanism
    Group Decision-Making
    Date: 2025
    Issue Date: 2025-09-01 15:03:44 (UTC+8)
    Abstract: 團體推薦系統常常面臨資料稀少、偏好動態偏移以及難以達成團體共識等挑戰。本研究遵循設計科學的方法,提出了兩階段動態團體推薦系統,藉由兩階段的設計以及能夠捕捉使用者即時情境和意圖的動態機制,從而實現個人化且符合團體目的的團體推薦,且無需依賴團體的歷史資料。在第一階段,使用者根據當下的情境篩選器接收個人化推薦;在第二階段,這些推薦被聚合形成最終的團體推薦。本系統設計同時融合了兩種動態機制:由群組創建者擔任代表,基於領導者的推薦機制 (LBD) 和允許所有成員參與貢獻,基於個體的推薦機制 (IDD)。實驗結果表明,兩種機制均能提供令人滿意且目標一致的推薦結果,但使用者普遍更喜歡 IDD 機制,認為其具有更高的靈活性、參與度和多樣性。本研究證明了將動態的使用者輸入整合到輕量級、使用者導向的設計中,使團體推薦系統能夠更好地適應團體需求並增強決策體驗。
    Group Recommendation Systems (GRSs) often face challenges such as data sparsity, dynamic preference shifts, and difficulty in reaching group consensus. Following the design science approach, this study proposes a two-stage dynamic GRS. Through a two-stage design and a dynamic mechanism that can capture users' immediate context and intent, it can achieve personalized and group-purpose group recommendations without relying on the historical group data. In the first stage, users receive individual recommendations based on current contextual filters; in the second stage, these are aggregated to form a final group recommendation. The system design incorporates two dynamic mechanisms: leader-based (LBD) where the group creator acts as the representative and sets the filter, and individual-driven (IDD) that allows all members to participate in expressing preferences. Experimental results show that both mechanisms can provide satisfactory and purpose-aligned recommendation results, and users generally prefer the IDD mechanism, believing that it has higher flexibility, participation, and diversity. This study demonstrates the value of integrating dynamic user input into a lightweight, user-oriented design, enabling GRSs to better adapt to group needs and enhance the decision-making experience.
    Reference: [1] M. Goyani, N. Chaurasiya, A Review of Movie Recommendation System: Limitations, Survey and Challenges, Electronic Letters on Computer Vision and Image Analysis 19 (2020) 18–37. https://doi.org/10.5565/rev/elcvia.1232.
    [2] M. van Setten, M. Veenstra, A. Nijholt, B. van Dijk, Goal-based structuring in recommender systems, Interact Comput 18 (2006) 432–456. https://doi.org/10.1016/j.intcom.2005.11.005.
    [3] G. Faggioli, M. Polato, F. Aiolli, Recency Aware Collaborative Filtering for Next Basket Recommendation, in: UMAP 2020 - Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, Association for Computing Machinery, Inc, 2020: pp. 80–87. https://doi.org/10.1145/3340631.3394850.
    [4] Y.L. Chen, L.C. Cheng, C.N. Chuang, A group recommendation system with consideration of interactions among group members, Expert Syst Appl 34 (2008) 2082–2090. https://doi.org/10.1016/j.eswa.2007.02.008.
    [5] G. Popescu, Group Recommender Systems as a Voting Problem, 2013.
    [6] J.A. Recio-García, L. Quijano, B. Díaz-Agudo, Including social factors in an argumentative model for Group Decision Support Systems, Decis Support Syst 56 (2013) 48–55. https://doi.org/10.1016/j.dss.2013.05.007.
    [7] H.J. Jeong, K.H. Lee, M.H. Kim, DGC: Dynamic group behavior modeling that utilizes context information for group recommendation, Knowl Based Syst 213 (2021). https://doi.org/10.1016/j.knosys.2020.106659.
    [8] L. Quijano-Sanchez, J.A. Recio-Garcia, B. Diaz-Agudo, G. Jimenez-Diaz, Social factors in group recommender systems, ACM Trans Intell Syst Technol 4 (2013). https://doi.org/10.1145/2414425.2414433.
    [9] H. Yin, Q. Wang, K. Zheng, Z. Li, J. Yang, X. Zhou, Social Influence-based Group Representation Learning for Group Recommendation, 2019.
    [10] K. Bok, J. Lim, H. Yang, J. Yoo, Social group recommendation based on dynamic profiles and collaborative filtering, Neurocomputing 209 (2016) 3–13. https://doi.org/10.1016/j.neucom.2015.11.120.
    [11] F. Barile, T. Draws, O. Inel, A. Rieger, S. Najafian, A. Ebrahimi Fard, R. Hada, N. Tintarev, Evaluating explainable social choice-based aggregation strategies for group recommendation, User Model User-Adapt Interact 34 (2024) 1–58. https://doi.org/10.1007/s11257-023-09363-0.
    [12] X. Wu, Y. Xiong, Y. Zhang, Y. Jiao, J. Zhang, Y. Zhu, P.S. Yu, ConsRec: Learning Consensus Behind Interactions for Group Recommendation, in: ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023, Association for Computing Machinery, Inc, 2023: pp. 240–250. https://doi.org/10.1145/3543507.3583277.
    [13] Z. Huang, Y. Liu, C. Zhan, C. Lin, W. Cai, Y. Chen, A Novel Group Recommendation Model With Two-Stage Deep Learning, IEEE Trans Syst Man Cybern Syst 52 (2022) 5853–5864. https://doi.org/10.1109/TSMC.2021.3131349.
    [14] L. Guo, H. Yin, Q. Wang, B. Cui, Z. Huang, L. Cui, Group recommendation with latent voting mechanism, in: Proc Int Conf Data Eng, IEEE Computer Society, 2020: pp. 121–132. https://doi.org/10.1109/ICDE48307.2020.00018.
    [15] A. V. Smirnov, N.G. Shilov, A. V. Ponomarev, A.M. Kashevnik, V.G. Parfenov, Group context-aware recommendation systems, Scientific and Technical Information Processing 41 (2014) 325–334. https://doi.org/10.3103/S0147688214050050.
    [16] L. Yu, Y. Leng, D. Zhang, S. He, Collaborative group embedding and decision aggregation based on attentive influence of individual members: A group recommendation perspective, Decis Support Syst 165 (2023). https://doi.org/10.1016/j.dss.2022.113894.
    [17] W. Wang, G. Zhang, J. Lu, Member contribution-based group recommender system, Decis Support Syst 87 (2016) 80–93. https://doi.org/10.1016/j.dss.2016.05.002.
    [18] F. Ismailoglu, Aggregating user preferences in group recommender systems: A crowdsourcing approach, Decis Support Syst 152 (2022). https://doi.org/10.1016/j.dss.2021.113663.
    [19] R. Abolghasemi, P. Engelstad, E. Herrera-Viedma, A. Yazidi, A personality-aware group recommendation system based on pairwise preferences, Inf Sci (N Y) 595 (2022) 1–17. https://doi.org/10.1016/j.ins.2022.02.033.
    [20] M. Kompan, M. Bielikova, Group recommendations: Survey and perspectives, Computing and Informatics 33 (2014) 446–476.
    [21] D. Jannach, M. Zanker, A Survey on Intent-aware Recommender Systems, (2024). http://arxiv.org/abs/2406.16350.
    [22] T.N. Nguyen, F. Ricci, A Chat-Based Group Recommender System for Tourism, in: Information and Communication Technologies in Tourism 2017, Springer International Publishing, 2017: pp. 17–30. https://doi.org/10.1007/978-3-319-51168-9_2.
    [23] E. Quintarelli, E. Rabosio, L. Tanca, Recommending new items to ephemeral groups using contextual user influence, in: RecSys 2016 - Proceedings of the 10th ACM Conference on Recommender Systems, Association for Computing Machinery, Inc, 2016: pp. 285–292. https://doi.org/10.1145/2959100.2959137.
    [24] E. Ceh-Varela, H. Cao, H.W. Lauw, Performance Evaluation of Aggregation-based Group Recommender Systems for Ephemeral Groups, ACM Trans Intell Syst Technol 13 (2022). https://doi.org/10.1145/3542804.
    [25] B. Kuechler, V. Vaishnavi, On theory development in design science research: anatomy of a research project, European Journal of Information Systems 17 (2008) 489–504. https://doi.org/10.1057/ejis.2008.40.
    [26] G. Adomavicius, B. Mobasher, F. Ricci, A. Tuzhilin, Context-aware recommender systems, AI Mag 32 (2011) 67–80. https://doi.org/10.1609/aimag.v32i3.2364.
    [27] U. Javed, K. Shaukat, I.A. Hameed, F. Iqbal, T.M. Alam, S. Luo, A Review of Content-Based and Context-Based Recommendation Systems, International Journal of Emerging Technologies in Learning 16 (2021) 274–306. https://doi.org/10.3991/ijet.v16i03.18851.
    [28] Q. Zhu, S. Wang, B. Cheng, Q. Sun, F. Yang, R.N. Chang, Context-aware group recommendation for point-of-interests, IEEE Access 6 (2018) 12129–12144. https://doi.org/10.1109/ACCESS.2018.2805701.
    [29] K. Haruna, M. Akmar Ismail, S. Suhendroyono, D. Damiasih, A. Pierewan, H. Chiroma, T. Herawan, Context-Aware Recommender System: A Review of Recent Developmental Process and Future Research Direction, Applied Sciences 7 (2017) 1211. https://doi.org/10.3390/app7121211.
    [30] K. Iizawa, N. Kobayashi, S. Shirasaka, What does the relationship between context and intent help for supporting design?, in: Proceedings - 2021 10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021, Institute of Electrical and Electronics Engineers Inc., 2021: pp. 606–611. https://doi.org/10.1109/IIAI-AAI53430.2021.00109.
    [31] Y.L. Lin, Y.X. Zheng, Y.C. Ku, Augmenting micro-moment recommendations with group and serendipity perspectives, Decis Support Syst 193 (2025). https://doi.org/10.1016/j.dss.2025.114454.
    [32] Y.L. Lin, S.W. Lee, A Personalized Interaction Mechanism Framework for Micro-moment Recommender Systems, ACM Trans Interact Intell Syst 13 (2023). https://doi.org/10.1145/3569586.
    [33] L. Lei, W. Dingding, L. Tao, K. Daniel, P. Balaji, SCENE : A Scalable Two-Stage Personalized News Recommendation System, Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2011) 1346.
    [34] J. Hron, K. Krauth, M.I. Jordan, N. Kilbertus, On component interactions in two-stage recommender systems, Adv Neural Inf Process Syst 34 (2021) 2744–2757.
    [35] K. Christakopoulou, A. Beutel, R. Li, S. Jain, E.H. Chi, Q&R: A two-stage approach toward interactive recommendation, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, 2018: pp. 139–147. https://doi.org/10.1145/3219819.3219894.
    [36] D. Jannach, A. Manzoor, W. Cai, L. Chen, A Survey on Conversational Recommender Systems, ACM Comput Surv 54 (2021). https://doi.org/10.1145/3453154.
    [37] L. Muchnik, S. Aral, S.J. Taylor, Social Influence Bias: A Randomized Experiment, Science (1979) 341 (2013) 647–651. https://doi.org/10.1126/science.1240466.
    [38] K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, P. Nixon, Group recommender systems, in: Proceedings of the 11th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, 2006: pp. 267–269. https://doi.org/10.1145/1111449.1111506.
    [39] T. De Pessemier, S. Dooms, L. Martens, Comparison of group recommendation algorithms, Multimed Tools Appl 72 (2014) 2497–2541. https://doi.org/10.1007/s11042-013-1563-0.
    [40] K. Karmakar, A Context-Aware Approach To Restaurant Recommendations: System Algorithm and Case Study, (n.d.). https://doi.org/10.13140/RG.2.2.12720.38409.
    [41] I. Christensen, S. Schiaffino, M. Armentano, Social group recommendation in the tourism domain, J Intell Inf Syst 47 (2016) 209–231. https://doi.org/10.1007/s10844-016-0400-0.
    [42] M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, K. Seada, Enhancing group recommendation by incorporating social relationship interactions, in: Proceedings of the 16th ACM International Conference on Supporting Group Work - GROUP ’10, ACM Press, New York, New York, USA, 2010: p. 97. https://doi.org/10.1145/1880071.1880087.
    [43] S. Berkovsky, J. Freyne, Group-based recipe recommendations, in: Proceedings of the Fourth ACM Conference on Recommender Systems, ACM, New York, NY, USA, 2010: pp. 111–118. https://doi.org/10.1145/1864708.1864732.
    [44] X. Fan, Y. Ji, B. Hui, A dynamic preference recommendation model based on spatiotemporal knowledge graphs, Complex and Intelligent Systems 11 (2025). https://doi.org/10.1007/s40747-024-01658-y.
    [45] M. Zhang, S. Wu, X. Yu, Q. Liu, L. Wang, Dynamic Graph Neural Networks for Sequential Recommendation, IEEE Trans Knowl Data Eng 35 (2023) 4741–4753. https://doi.org/10.1109/TKDE.2022.3151618.
    [46] H. Xu, Y. Ding, J. Sun, K. Zhao, Y. Chen, Dynamic group recommendation based on the attention mechanism, Future Internet 11 (2019). https://doi.org/10.3390/fi11090198.
    [47] Q. Zhu, L. Wang, Context-Aware Restaurant Recommendation for Group of People, in: Proceedings - 2020 IEEE World Congress on Services, SERVICES 2020, Institute of Electrical and Electronics Engineers Inc., 2020: pp. 51–54. https://doi.org/10.1109/SERVICES48979.2020.00025.
    [48] L. Chen, M. Xia, A context-aware recommendation approach based on feature selection, Applied Intelligence 51 (2021) 865–875. https://doi.org/10.1007/s10489-020-01835-9.
    [49] J. Zeng, F. Li, H. Liu, J. Wen, S. Hirokawa, A restaurant recommender system based on user preference and location in mobile environment, in: Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 55–60. https://doi.org/10.1109/IIAI-AAI.2016.126.
    [50] D. Contreras, M. Salamó, L. Boratto, Integrating Collaboration and Leadership in Conversational Group Recommender Systems, ACM Trans Inf Syst 39 (2021) 1–32. https://doi.org/10.1145/3462759.
    [51] I. Alina Christensen, S. Schiaffino, Social influence in group recommender systems, Online Information Review 38 (2014) 524–542. https://doi.org/10.1108/OIR-08-2013-0187.
    [52] Z. Xu, X. Zheng, H. Zhang, Y. Luo, A Novel Travel Group Recommendation Model Based on User Trust and Social Influence, Mobile Information Systems 2021 (2021) 1–10. https://doi.org/10.1155/2021/7080116.
    [53] A. Delic, J. Masthoff, J. Neidhardt, H. Werthner, How to Use Social Relationships in Group Recommenders, in: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, ACM, New York, NY, USA, 2018: pp. 121–129. https://doi.org/10.1145/3209219.3209226.
    [54] R. Khoshkangini, M.S. Pini, F. Rossi, A Self-Adaptive Context-Aware Group Recommender System, in: 2016: pp. 250–265. https://doi.org/10.1007/978-3-319-49130-1_19.
    [55] J.S. Zhang, M. Gartrell, R. Han, Q. Lv, S. Mishra, GEVR: An Event Venue Recommendation System for Groups of Mobile Users, Proc ACM Interact Mob Wearable Ubiquitous Technol 3 (2019) 1–25. https://doi.org/10.1145/3314421.
    [56] L. Baltrunas, B. Ludwig, S. Peer, F. Ricci, Context relevance assessment and exploitation in mobile recommender systems, in: Pers Ubiquitous Comput, 2012: pp. 507–526. https://doi.org/10.1007/s00779-011-0417-x.
    [57] D. Gan, M. Gao, W. Li, Z. Wang, L. Guo, F. Jiang, Y. Song, LARGE: A leadership perception framework for group recommendation, Expert Syst Appl 260 (2025) 125416. https://doi.org/10.1016/j.eswa.2024.125416.
    [58] B.A. Vargas Govea, G. Gonzalez Serna, B. Vargas-Govea, G. González-Serna, R. Ponce-Medellín, Effects of relevant contextual features in the performance of a restaurant recommender system, 2011. https://www.researchgate.net/publication/248703303.
    [59] Q. Liu, X. Gan, Combining user contexts and user opinions for restaurant recommendation in mobile environment, Journal of Electronic Commerce in Organizations 14 (2016) 45–63. https://doi.org/10.4018/JECO.2016010105.
    [60] P. Lops, M. de Gemmis, G. Semeraro, Content-based Recommender Systems: State of the Art and Trends, in: Recommender Systems Handbook, Springer US, Boston, MA, 2011: pp. 73–105. https://doi.org/10.1007/978-0-387-85820-3_3.
    [61] M.J. Pazzani, D. Billsus, Content-Based Recommendation Systems, in: The Adaptive Web, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007: pp. 325–341. https://doi.org/10.1007/978-3-540-72079-9_10.
    [62] P. Pu, L. Chen, R. Hu, A user-centric evaluation framework for recommender systems, in: Proceedings of the Fifth ACM Conference on Recommender Systems, ACM, New York, NY, USA, 2011: pp. 157–164. https://doi.org/10.1145/2043932.2043962.
    [63] A. Jameson, B. Smyth, Recommendation to Groups, in: The Adaptive Web, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007: pp. 596–627. https://doi.org/10.1007/978-3-540-72079-9_20.
    [64] J. Masthoff, Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers, User Model User-Adapt Interact 14 (2004) 37–85. https://doi.org/10.1023/B:USER.0000010138.79319.fd.
    [65] M. Ge, D. Jannach, F. Gedikli, M. Hepp, Effects of the Placement of Diverse Items in Recommendation Lists, in: Proceedings of the 14th International Conference on Enterprise Information Systems, SciTePress - Science and and Technology Publications, 2012: pp. 201–208. https://doi.org/10.5220/0003974802010208.
    [66] M.-C. Tang, Exploring the Impact of Users’ Preference Diversity on Recommender System Performance, in: Lecture Notes in Computer Science, vol 8527, Springer, Cham, 2014: pp. 681–689. https://doi.org/10.1007/978-3-319-07293-7_66.
    [67] J. Kim, I. Choi, Q. Li, Customer Satisfaction of Recommender System: Examining Accuracy and Diversity in Several Types of Recommendation Approaches, Sustainability 13 (2021) 6165. https://doi.org/10.3390/su13116165.
    [68] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, D. Yin, Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning, (2018). https://doi.org/10.1145/3219819.3219886.
    [69] X. Wang, F. Fukumoto, J. Cui, Y. Suzuki, D. Yu, Nfarec: A negative feedback-aware recommender model, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2024: pp. 935–945. https://doi.org/10.1145/3626772.3657809.
    [70] F. Cena, L. Console, F. Vernero, How to deal with negative preferences in recommender systems: a theoretical framework, J Intell Inf Syst 60 (2023) 23–47. https://doi.org/10.1007/s10844-022-00705-9.
    Description: 碩士
    國立政治大學
    資訊管理學系
    112356006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112356006
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    600601.pdf2742KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback