Reference: | Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5:135–146. Chen, H., Dou, Y., and Xiao, Y. (2023). Understanding the role of live streamers in live-streaming e-commerce. Electronic commerce research and applications, 59:101266. Chi, H., Xu, H., Fu, H., Liu, M., Zhang, M., Yang, Y., Hao, Q., and Wu, W. (2022). Long short-term preference modeling for continuous-time sequential recommendation. arXiv preprint arXiv:2208.00593. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pages 4171–4186. Dridi, R., Tamine, L., and Slimani, Y. (2022). Exploiting context-awareness and multi-criteria decision making to improve items recommendation using a tripartite graph-based model. Information Processing & Management, 59(2):102861. Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without exploration. In International conference on machine learning, pages 2052– 2062. PMLR. Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939. Jadon, A. and Patil, A. (2024). A comprehensive survey of evaluation techniques for recommendation systems. In International Conference on Computation of Artificial Intelligence & Machine Learning, pages 281–304. Springer. Jambo Live Streaming Platform (2023). Jambo live streaming platform. https:// jambolive.tv/. Kang, W.-C. and McAuley, J. (2018). Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM), pages 197–206. IEEE. Kim, K.-M., Kwak, D., Kwak, H., Park, Y.-J., Sim, S., Cho, J.-H., Kim, M., Kwon, J., Sung, N., and Ha, J.-W. (2019). Tripartite heterogeneous graph propagation for largescale social recommendation. arXiv preprint arXiv:1908.02569. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480. Konda, V. and Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information processing systems, 12. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert: A lite bert for self-supervised learning of language representations. In International Conference on Learning Representations. Li, Y., Zhao, F., Chen, Z., Fu, Y., and Ma, L. (2023). Multi-behavior enhanced heterogeneous graph convolutional networks recommendation algorithm based on feature-interaction. Applied Artificial Intelligence, 37(1):2201144. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. Liu, M., Wang, J., Abdelfatah, K., and Korayem, M. (2019). Tripartite vector representations for better job recommendation. arXiv preprint arXiv:1907.12379. Liu, X., Wu, S., Zhang, Z., and Shen, C. (2022). Unify local and global information for top-n recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1262–1272. Lu, B. and Chen, Z. (2021). Live streaming commerce and consumers’purchase intention: An uncertainty reduction perspective. Information & Management, 58(7):103509. Mnih, V. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. Reimers, N. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Rendle, S. (2010). Factorization machines. In 2010 IEEE International conference on data mining, pages 995–1000. IEEE. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285–295. Shani, G., Heckerman, D., Brafman, R. I., and Boutilier, C. (2005). An mdp-based recommender system. Journal of machine Learning research, 6(9). Shi, C., Han, X., Song, L., Wang, X., Wang, S., Du, J., and Philip, S. Y. (2019). Deep collaborative filtering with multi-aspect information in heterogeneous networks. IEEE transactions on knowledge and data engineering, 33(4):1413–1425. Tang, J. and Wang, K. (2018). Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the eleventh ACM international conference on web search and data mining, pages 565–573. Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30. Van Meteren, R. and Van Someren, M. (2000). Using content-based filtering for recommendation. In Proceedings of the machine learning in the new information age: MLnet/ECML2000 workshop, volume 30, pages 47–56. Barcelona. Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems. Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and Wei, F. (2024). Multilingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672. Wang, P., Fan, Y., Xia, L., Zhao, W. X., Niu, S., and Huang, J. (2020). Kerl: A knowledge-guided reinforcement learning model for sequential recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pages 209–218. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016). Dueling network architectures for deep reinforcement learning. In International conference on machine learning, pages 1995–2003. PMLR. Wu, Y., Li, K., Zhao, G., and Qian, X. (2020). Personalized long-and short-term preference learning for next poi recommendation. IEEE Transactions on Knowledge and Data Engineering, 34(4):1944–1957. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., and Sun, J. (2010). Temporal recommendation on graphs via long-and short-term preference fusion. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 723–732. Xin, X., Karatzoglou, A., Arapakis, I., and Jose, J. M. (2020). Self-supervised reinforcement learning for recommender systems. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pages 931– 940. Yu, L., Gong, W., and Zhang, D. (2024). Live streaming channel recommendation based on viewers’ interaction behavior: A hypergraph approach. Decision Support Systems, 184:114272. Yu, S., Jiang, Z., Chen, D.-D., Feng, S., Li, D., Liu, Q., and Yi, J. (2021). Leveraging tripartite interaction information from live stream e-commerce for improving product recommendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 3886–3894. Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J. M., and He, X. (2019). A simple convolutional generative network for next item recommendation. In Proceedings of the twelfth ACM international conference on web search and data mining, pages 582–590. Zhang, M., Liu, Y., Wang, Y., and Zhao, L. (2022). How to retain customers: Understanding the role of trust in live streaming commerce with a socio-technical perspective. Computers in Human Behavior, 127:107052. Zhang, R., Liu, Q.-d., Wei, J.-X., et al. (2014). Collaborative filtering for recommender systems. In 2014 second international conference on advanced cloud and big data, pages 301–308. IEEE. Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., and Yin, D. (2018). Recommendations with negative feedback via pairwise deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pages 1040–1048. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., and Li, Z. (2018). Drn: A deep reinforcement learning framework for news recommendation. In Proceedings of the 2018 world wide web conference, pages 167–176. Zhou, S., Dai, X., Chen, H., Zhang, W., Ren, K., Tang, R., He, X., and Yu, Y. (2020). Interactive recommender system via knowledge graph-enhanced reinforcement learning. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pages 179–188. Zou, L., Xia, L., Du, P., Zhang, Z., Bai, T., Liu, W., Nie, J.-Y., and Yin, D. (2020). Pseudo dyna-q: A reinforcement learning framework for interactive recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining, pages 816–824. |