Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/158485
|
Title: | AI虛擬導覽員促進知識圖譜於元宇宙數位策展應用成效的影響研究 A Study on the Effects of AI Virtual Guides on Enhancing the Application Effectiveness of Knowledge Graph for Digital Curation in the Metaverse |
Authors: | 戴婉娟 Dai, Wan-Juan |
Contributors: | 陳志銘 Chen, Chih-Ming 戴婉娟 Dai, Wan-Juan |
Keywords: | AI虛擬導覽員 知識圖譜 元宇宙數位策展 數位人文 圖文認知風格 AI Virtual Guide Knowledge Graph Metaverse Digital Curation Digital Humanities Visual-Verbal Cognitive Style |
Date: | 2025 |
Issue Date: | 2025-08-04 14:02:46 (UTC+8) |
Abstract: | 隨著沉浸式科技與生成式人工智慧的快速發展,傳統實體策展正逐漸轉型為數位策展。特別是在元宇宙數位策展中,沉浸式虛擬展示空間不僅可突破時空限制,更能夠提供高度互動與臨場感的學習體驗,促進觀展學習者對於策展內容的理解與情感連結。然而,目前多數元宇宙數位策展仍以圖文與影音為主,呈現方式仍偏向於單向資訊傳遞,缺乏即時互動與引導之觀展機制。加上元宇宙中的非線性資訊結構雖具彈性與多樣性,卻可能導致觀展學習者難以掌握完整的知識脈絡。而「知識圖譜」(Knowledge Graph)可透過資訊的視覺化與結構化呈現,協助學習者釐清概念關係並辨識資訊節點之間的連結,有助於提升觀展者對於策展內容的理解。然而,觀展者在使用「知識圖譜」輔以觀展時,仍需透過人工近讀(close reading)以補足節點之間所缺乏的語意脈絡,如此將增加操作上的負擔。而結合大型語言模型(Large Language Model, LLM)與檢索增強生成(Retrieval-Augmented Generation, RAG)技術所建構的「AI虛擬導覽員」,能即時回應自然語言提問,補充知識圖譜中的資訊缺口,進一步提升觀展時的互動體驗與學習效率。 因此,本研究旨在探討結合「AI虛擬導覽員」與「知識圖譜」於元宇宙數位策展之輔助觀展模式,是否有助於提升觀展學習成效、學習動機與認知投入,並降低其認知負荷。本研究以《馬來西亞興化群賢錄》為策展主題,採用真實驗研究法,招募41位馬來西亞華人參與研究,並依是否使用「AI虛擬導覽員」輔以「知識圖譜」之觀展將研究對象隨機分派為使用結合AI虛擬導覽員與知識圖譜輔助觀展的實驗組(21人),以及僅使用知識圖譜輔助觀展的控制組(20人),以評估兩組觀展學習者在觀展學習成效、學習動機、認知投入,以及認知負荷是否具有顯著的差異,並納入圖文認知風格作為背景變項,探討不同認知風格觀展學習者在這兩種輔助觀展模式下的觀展學習成效、學習動機、認知投入,以及認知負荷是否具有顯著的差異。另外,透過半結構式訪談深入了解兩組觀展學習者對於這兩種不同輔助觀展模式的觀展歷程、感受與建議。 研究結果顯示,實驗組的觀展學習成效顯著優於控制組觀展學習者,對於文字型觀展學習者在觀展學習成效之知識理解、學習愉悅、啟發與創造力等面向上的效益尤為顯著。此外,實驗組在學習動機之興趣、樂趣、感知能力與感知價值上亦顯著優於控制組,對於文字型觀展學習者在學習動機之興趣與樂趣上的效益尤為顯著。在認知投入方面,實驗組在精緻化與批判性思考能力上顯著優於控制組,對於圖像型觀展學習者在批判性思考方面的效益尤為顯著。在認知負荷方面,實驗組在外在認知負荷上顯著低於控制組,對於文字型觀展學習者的效益尤為顯著。訪談結果進一步指出,AI虛擬導覽員的互動問答機制有助於釐清學習脈絡、補足知識圖譜中的資訊缺口,並強化問題意識、激發學習動機與深化認知投入,同時減少操作多重工具所帶來的負擔,進而提升整體觀展學習成效。此外,其語言導向與個人化互動特性對文字型觀展學習者的學習歷程產生正面影響。 綜合而言,本研究證實結合「AI虛擬導覽員」與「知識圖譜」的輔助觀展模式在元宇宙數位策展環境中具備提升互動性、導引性與個人化學習體驗的潛力,對未來數位人文、文化展示與教育推廣的智慧導覽設計與知識詮釋策略提供實證基礎與發展方向。未來可進一步強化AI虛擬導覽員的多模態感知能力,以滿足多元需求,並建議將此模式擴展應用至其他主題領域與沉浸式互動環境中,驗證其應用的廣泛性與可行性。此外,亦可深化AI虛擬導覽員與知識圖譜間的結構性整合,強化其語意推理與知識組織能力,建構具備邏輯一致性與知識可驗證性的主動支援式導覽系統。 As immersive technology and generative artificial intelligence rapidly advance, traditional physical curation is increasingly shifting to digital curation. In particular, metaverse digital curation leverages immersive virtual exhibition environments that not only transcend the constraints of time and space but also provide highly interactive and realistic learning experiences that enhance visitors’ understanding of curatorial content and foster emotional engagement. However, most current metaverse digital curation still primarily relies on textual and audiovisual content, with presentation modes largely centered on unidirectional information delivery and lacking real-time interaction and guiding mechanisms. Furthermore, while the nonlinear information structure of the metaverse offers flexibility and diversity, it may also hinder learners’ ability to comprehend a coherent knowledge framework. To address these challenges, the knowledge graph, through the visualization and structuring of information, helps learners clarify conceptual relationships and identify connections among information nodes, thereby enhancing their understanding of the curatorial content. Nonetheless, when engaging with knowledge graphs, learners often still need to do additional close reading to bridge the semantic gaps between nodes, an effort that adds extra cognitive load. The integration of large language models (LLMs) and retrieval-augmented generation (RAG) technologies into the design of AI Virtual Guides enables real-time responses to natural language queries, supplementing missing information in the Knowledge Graph and further enhancing interactive experiences and learning efficiency during exhibitions. Accordingly, this study aims to explore whether integrating AI virtual guides and knowledge graphs as an assistive exhibition model in metaverse digital curation can improve exhibition learning outcomes, increase learning motivation and cognitive engagement, and reduce cognitive load. Taking The Biographies of Malaysian Henghua Personalities as the curatorial theme, the study adopted a true experimental research design, recruiting 41 Malaysian Chinese participants. Participants were randomly assigned to either an experimental group (n=21), which experienced exhibition learning through the combined use of AI virtual guides and knowledge graphs, or a control group (n=20), which used only knowledge graphs. The study examined whether there were significant differences between the two groups in terms of exhibition learning outcomes, learning motivation, cognitive engagement, and cognitive load. Additionally, visual-verbal cognitive style was included as a background variable to investigate how learners with different cognitive styles performed under the two assistive exhibition models. Semi-structured interviews were also conducted to gain deeper insights into participants' experiences, perceptions, and suggestions regarding the two assistive exhibition modes. The results revealed that the experimental group outperformed the control group in terms of exhibition learning outcomes. This effect was particularly pronounced among verbal learners, who showed significantly greater gains in knowledge comprehension, enjoyment, inspiration, and creativity. In terms of learning motivation, the experimental group reported higher levels of interest, enjoyment, perceived competence, and perceived value, with verbal learners in the experimental group demonstrating significantly higher levels of interest and enjoyment compared to their counterparts. Regarding cognitive engagement, the experimental group exhibited significantly higher levels of elaborative and critical thinking, especially among visual learners, who outperformed those in the control group in critical thinking. In terms of cognitive load, the experimental group experienced significantly lower extraneous cognitive load, with verbal learners benefiting the most. Interview data further revealed that the interactive Q&A functionality of the AI virtual guides helped clarify learning pathways, supplement information gaps in the knowledge graph, and cultivate problem awareness, which in turn stimulated learning motivation, promoted deeper cognitive engagement, and reduced the cognitive load associated with operating multiple tools, thereby improving overall exhibition learning outcomes. The language-based and personalized interaction of the AI virtual guides also had a particularly positive impact on the learning process of verbal learners. In conclusion, this study demonstrates that integrating AI virtual guides with knowledge graphs as an assistive exhibition model within metaverse digital curation holds strong potential for enhancing interactivity, guidance, and personalized learning experiences. It provides an empirical foundation for the future development of intelligent guidance systems and knowledge interpretation strategies in digital humanities, cultural exhibitions, and educational outreach. Future research is encouraged to further strengthen the multimodal response capabilities of AI virtual guides, enabling them to meet diverse user needs. Additionally, expanding the application of this model to other subject domains and immersive interactive environments will validate its broader feasibility and applicability. Additionally, enhancing the structural integration between AI virtual guides and knowledge graphs can improve their semantic reasoning and knowledge organization, resulting in a proactive support-based guiding system with logical consistency and verifiable knowledge. |
Reference: | Abdellatif, A., Badran, K., Costa, D. E., & Shihab, E. (2022). A comparison of natural language understanding platforms for chatbots in software engineering. IEEE Transactions on Software Engineering, 48(8), 3087–3102. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2021.3078384 Abu-Salih, B., & Alotaibi, S. (2024). A systematic literature review of knowledge graph construction and application in education. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25383 Alassi, S., & Rosenthaler, L. (2024). Semantic precision: Crafting RDF-based digital editions for unveiling the layers of historical correspondence. Digital Scholarship in the Humanities, 39(3), 813–835. https://doi.org/10.1093/llc/fqae027 Almogren, A. S., Al-Rahmi, W. M., & Dahri, N. A. (2024). Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon, 10(11), e31887. https://doi.org/10.1016/j.heliyon.2024.e31887 Alsafari, B., Atwell, E., Walker, A., & Callaghan, M. (2024). Towards effective teaching assistants: From intent-based chatbots to LLM-powered teaching assistants. Natural Language Processing Journal, 8, 100101. https://doi.org/10.1016/j.nlp.2024.100101 Alshahrani, M., Khan, M. A., Maddouri, O., Kinjo, A. R., Queralt-Rosinach, N., & Hoehndorf, R. (2017). Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics, 33(17), 2723–2730. https://doi.org/10.1093/bioinformatics/btx275 Ariesta, F. W., Maftuh, B., Sapriya, & Syaodih, E. (2024). The effectiveness of virtual tour museums on student engagement in social studies learning in elementary schools. Jurnal Ilmiah Sekolah Dasar, 8(1), 45–53. https://doi.org/10.23887/jisd.v8i1.67726 Athaluri, S. A., Manthena, S. V., Kesapragada, V. S. R. K. M., Yarlagadda, V., Dave, T., & Duddumpudi, R. T. S. (2023). Exploring the boundaries of reality: Investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. Cureus. https://doi.org/10.7759/cureus.37432 Atienza, J. M. A., Hilario, S. M., Lopez, N. E., Pagara, J. J. T., & Gamoso, R. A. (2024). The virtual tour guides on tourists’ satisfaction: Role of sense of presence. European Proceedings of Social and Behavioural Sciences. https://doi.org/10.15405/epsbs.2024.05.87 Bakonyi, Z. (2024). How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research. Journal of Organizational Change Management, 37(7), 1405–1426. https://doi.org/10.1108/JOCM-01-2023-0026 Balogun, J., Best, K., & Lê, J. (2015). Selling the object of strategy: How frontline workers realize strategy through their daily work. Organization Studies, 36(10), 1285–1313. https://doi.org/10.1177/0170840615590282 Basheer, S., Farooq, S., & Reshi, M. A. (2022). Tourism, the metaverse, artificial intelligence, and travel: Striking a balance between innovation and concerns. Journal of Social Responsibility,Tourism and Hospitality, 2(06), Article 06. https://doi.org/10.55529/jsrth.26.19.30 Béchard, P., & Ayala, O. M. (2024). Reducing hallucination in structured outputs via retrieval-augmented generation. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 228–238. https://doi.org/10.18653/v1/2024.naacl-industry.19 Bevilacqua, M., Pasini, T., Raganato, A., & Navigli, R. (2021). Recent trends in word sense disambiguation: A survey. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 4330–4338. https://doi.org/10.24963/ijcai.2021/593 Bilquise, G., Ibrahim, S., & Shaalan, K. (2022). Emotionally intelligent chatbots: A systematic literature review. Human Behavior and Emerging Technologies, 2022(1), 9601630. https://doi.org/10.1155/2022/9601630 Bizer, C., Heath, T., & Berners-Lee, T. (2023). Linked data-the story so far. In Linking the World’s Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web (pp. 115–143). Association for Computing Machinery. https://doi.org/10.1145/3591366.3591378 Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: theory and measurement. Applied Cognitive Psychology, 23(5), 638–663. https://doi.org/10.1002/acp.1473 Brown, S. (2007). A critique of generic learning outcomes. Journal of Learning Design, 2(2), 22–30. Bruno, E., Pasqual, V., & Tomasi, F. (2024). Italo Calvino’s ‘destini incrociati’. An experiment of semantic narrative modelling and visualisation. Umanistica Digitale, 17, 47–69. https://doi.org/10.6092/issn.2532-8816/19013 Buragohain, D., Meng, Y., Deng, C., Li, Q., & Chaudhary, S. (2024). Digitalizing cultural heritage through metaverse applications: Challenges, opportunities, and strategies. Heritage Science, 12, 295. https://doi.org/10.1186/s40494-024-01403-1 Carsten Conner, L. D., & Perin, S. M. (2020). Learning from the real versus the replicated: A comparative study. International Journal of Science Education, Part B, 10(3), 266–276. https://doi.org/10.1080/21548455.2020.1831707 Chao, M.-H., Trappey, A. J. C., & Wu, C.-T. (2021). Emerging technologies of natural language-enabled chatbots: A review and trend forecast using intelligent ontology extraction and patent analytics. Complexity, 2021(1), 5511866. https://doi.org/10.1155/2021/5511866 Chekembayeva, G., & Garaus, M. (2024). Authenticity matters: Investigating virtual tours’ impact on curiosity and museum visit intentions. Journal of Services Marketing, 38(7), 941–956. https://doi.org/10.1108/JSM-09-2023-0343 Chen, C.-M., & Lin, Y.-J. (2016). Effects of different text display types on reading comprehension, sustained attention and cognitive load in mobile reading contexts. Interactive Learning Environments, 24(3), 553–571. https://doi.org/10.1080/10494820.2014.891526 Chen, C.-M., Witt, B., & Lin, C.-Y. (2025). A knowledge graph analysis tool of people and organizations to facilitate digital humanities research. Data Technologies and Applications, 59(1), 82–110. https://doi.org/10.1108/DTA-01-2024-0009 Chen, R.-C., Huang, Y.-H., Bau, C.-T., & Chen, S.-M. (2012). A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection. Expert Systems with Applications, 39(4), 3995–4006. https://doi.org/10.1016/j.eswa.2011.09.061 Chen, S. (2024). Research and application of emotion-based digital museum interaction design. Journal of Art, Culture and Philosophical Studies, 1(1). https://doi.org/10.70767/jacps.v1i1.45 Cheng, S., Liang, X., Bi, Z., Chen, H., & Zhang, N. (2023). Multi-modal protein knowledge graph construction and applications (student abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), Article 13. https://doi.org/10.1609/aaai.v37i13.26955 Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. Journal of Consumer Research, 12(2), 125–134. Cosgrove, A. L., Beaty, R. E., Diaz, M. T., & Kenett, Y. N. (2023). Age differences in semantic network structure: Acquiring knowledge shapes semantic memory. Psychology and Aging, 38(2), 87–102. https://doi.org/10.1037/pag0000721 Diamantopoulou, S., Christidou, D., & Blunden, J. (2024). Multimodality and museums: Innovative research methods and interpretive frameworks. Multimodality & Society, 4(3), 249–258. https://doi.org/10.1177/26349795241270436 Dong, S. (2024). Research on the application of digital media technology in museum exhibition design: A case study of the national museum of Singapore. SHS Web of Conferences, 181, 04031. https://doi.org/10.1051/shsconf/202418104031 Dong, S., Xu, S., & Wu, G. (2006). Earth Science Digital Museum (ESDM): Toward a new paradigm for museums. Computers & Geosciences, 32(6), 793–802. https://doi.org/10.1016/j.cageo.2005.10.017 Duan, Y., Shao, L., Hu, G., Zhou, Z., Zou, Q., & Lin, Z. (2017). Specifying architecture of knowledge graph with data graph, information graph, knowledge graph and wisdom graph. 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 327–332. https://doi.org/10.1109/SERA.2017.7965747 Falk, J. H., & Dierking, L. D. (2008). Enhancing visitor interaction and learning with mobile technologies. In Digital technologies and the museum experience: Handheld guides and other media (pp. 19–33). Faridah, I., Sari, F. R., Wahyuningsih, T., Oganda, F. P., & Rahardja, U. (2020). Effect digital learning on student motivation during covid-19. 2020 8th International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM50537.2020.9268843 Flores-Castañeda, R. O., Olaya-Cotera, S., & Iparraguirre-Villanueva, O. (2023). Benefits of metaverse application in education: A systematic review. International Journal of Engineering Pedagogy, 14(1), 61–68. https://doi.org/10.3991/ijep.v14i1.42421 Følstad, A., Brandtzaeg, P. B., Feltwell, T., Law, E. L.-C., Tscheligi, M., & Luger, E. A. (2018). SIG: Chatbots for social good. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, 1–4. https://doi.org/10.1145/3170427.3185372 Gao, Y., Zhang, Q., Wang, X., Huang, Y., Meng, F., & Tao, W. (2024). Multidimensional knowledge discovery of cultural relics resources in the Tang tomb mural category. The Electronic Library, 42(1), 1–22. https://doi.org/10.1108/EL-04-2023-0091 Golub, K., & Liu, Y.-H. (2022). Information and knowledge organisation in digital humanities: Global perspectives. Taylor & Francis. https://doi.org/10.4324/9781003131816 Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14–30. https://doi.org/10.1080/00461520.2014.989230 Guo, L., Du, J., & Zheng, Q. (2023). Understanding the evolution of cognitive engagement with interaction levels in online learning environments: Insights from learning analytics and epistemic network analysis. Journal of Computer Assisted Learning, 39(3), 984–1001. https://doi.org/10.1111/jcal.12781 Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., & He, Q. (2022). A survey on knowledge graph-based recommender systems. IEEE Transactions on Knowledge and Data Engineering, 34(8), 3549–3568. https://doi.org/10.1109/TKDE.2020.3028705 Gupta, A., Zhang, P., Lalwani, G., & Diab, M. (2019). CASA-NLU: Context-aware self-attentive natural language understanding for task-oriented chatbots (arXiv:1909.08705). arXiv. https://doi.org/10.48550/arXiv.1909.08705 Hijazi, A. N., & Baharin, A. H. A. (2022). The effectiveness of digital technologies used for the visitor’s experience in digital museums. A systematic literature review from the last two decades. International Journal of Interactive Mobile Technologies (iJIM), 16(16), 142–159. https://doi.org/10.3991/ijim.v16i16.31811 Hildebrandt, C., Törsleff, S., Caesar, B., & Fay, A. (2018). Ontology building for cyber-physical systems: A domain expert-centric approach. 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 1079–1086. https://doi.org/10.1109/COASE.2018.8560465 Huang, J., Zhu, K., Chang, K. C.-C., Xiong, J., & Hwu, W. (2022). DEER: Descriptive knowledge graph for explaining entity relationships (arXiv:2205.10479). arXiv. https://doi.org/10.48550/arXiv.2205.10479 Jasmine, A., Gunnar, A., Elin, F., Illsley, W. R., Wilhelm, L., Petrina, V., & Jonathan, W. (2024). Innovation in heritage education: Exploring immersive technologies across european museum and heritage sites. Immersive Learning Research-Academic, 127–134. https://doi.org/10.56198/U6C0W6JID Jia, J. (2021). From data to knowledge: The relationships between vocabularies, linked data and knowledge graphs. Journal of Documentation, 77(1), 93–105. https://doi.org/10.1108/JD-03-2020-0036 Jiang, Z., Chi, C., & Zhan, Y. (2021). Research on Medical Question Answering System Based on Knowledge Graph. IEEE Access, 9, 21094–21101. https://doi.org/10.1109/ACCESS.2021.3055371 Jiao, A. (2020). An intelligent chatbot system based on entity extraction using RASA NLU and neural network. Journal of Physics: Conference Series, 1487(1), 012014. https://doi.org/10.1088/1742-6596/1487/1/012014 Jo, H. (2024). Subscription intentions for ChatGPT plus: A look at user satisfaction and self-efficacy. Marketing Intelligence & Planning, 42(6), 1052–1073. https://doi.org/10.1108/MIP-08-2023-0411 Karyaningsih, D., Fernando, D., Sofian, A. R., & Luthfi, F. (2022). Augmented reality virtual guide museum multatuli rangkasbitung based on android. JISA(Jurnal Informatika Dan Sains), 5(2), 173–180. https://doi.org/10.31326/jisa.v5i2.1434 Khatri, S., Iqbal, M., Ubakanma, G., & van der Vliet-Firth, S. (2022). SkillBot: Towards data augmentation using transformer language model and linguistic evaluation. 2022 Human-Centered Cognitive Systems (HCCS), 1–9. https://doi.org/10.1109/HCCS55241.2022.10090376 Khennouche, F., Elmir, Y., Himeur, Y., Djebari, N., & Amira, A. (2024). Revolutionizing generative pre-traineds: Insights and challenges in deploying ChatGPT and generative chatbots for FAQs. Expert Systems with Applications, 246, 123224. https://doi.org/10.1016/j.eswa.2024.123224 Khoo, C. S. G., Tan, E. A. L., Ng, S.-G., Chan, C.-F., Stanley-Baker, M., & Cheng, W.-N. (2024). Knowledge graph visualization interface for digital heritage collections: Design issues and recommendations. Information Technology and Libraries, 43(1). https://doi.org/10.5860/ital.v43i1.16719 Kirchenbauer, J., & Barns, C. (2024). Hallucination reduction in large language models with retrieval-augmented generation using wikipedia knowledge. Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. Kollöffel, B. (2012). Exploring the relation between visualizer–verbalizer cognitive styles and performance with visual or verbal learning material. Computers & Education, 58(2), 697–706. https://doi.org/10.1016/j.compedu.2011.09.016 Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., & Abraham, A. (2022). AI-based conversational agents: A scoping review from technologies to future directions. IEEE Access, 10, 92337–92356. https://doi.org/10.1109/ACCESS.2022.3201144 Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: Systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56. https://doi.org/10.1186/s41239-023-00426-1 Lacedelli, S. Z., Fazzi, F., Zanetti, C., & Pompanin, G. (2023). From “exhibition” to “laboratory”: Rethinking curatorial practices through a digital experimental project. The case study of #Dolomitesmuseum-laboratory of stories. Herança, 6(1), 158–183. https://doi.org/10.52152/heranca.v6i1.680 Li, J., Zheng, X., Watanabe, I., & Ochiai, Y. (2024). A systematic review of digital transformation technologies in museum exhibition. Computers in Human Behavior, 161, 108407. https://doi.org/10.1016/j.chb.2024.108407 Li, Q., & Chen, Y.-L. (2009). Entity-relationship diagram. In Modeling and Analysis of Enterprise and Information Systems: From Requirements to Realization (pp. 125–139). Springer. https://doi.org/10.1007/978-3-540-89556-5_6 Li Y., Chen D., & Deng X. (2024). The impact of digital educational games on student’s motivation for learning: The mediating effect of learning engagement and the moderating effect of the digital environment. PLOS ONE, 19(1), e0294350. https://doi.org/10.1371/journal.pone.0294350 Liang, H.-Y., Hwang, G.-J., Hsu, T.-Y., & Yeh, J.-Y. (2024). Effect of an AI-based chatbot on students’ learning performance in alternate reality game-based museum learning. British Journal of Educational Technology, 55(5), 2315–2338. https://doi.org/10.1111/bjet.13448 Lin, M.-H., Chen, H.-C., & Liu, K.-S. (2017). A study of the effects of digital learning on learning motivation and learning outcome. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3553–3564. https://doi.org/10.12973/eurasia.2017.00744a Liu, W., Huang, H., Saleem, A., & Zhao, Z. (2022). The effects of university students’ fragmented reading on cognitive development in the new media age: Evidence from Chinese higher education. PeerJ, 10, e13861. https://doi.org/10.7717/peerj.13861 Luo, B., Lau, R. Y. K., Li, C., & Si, Y.-W. (2022). A critical review of state-of-the-art chatbot designs and applications. WIREs Data Mining and Knowledge Discovery, 12(1), e1434. https://doi.org/10.1002/widm.1434 Marupaka, N., & Minai, A. A. (2011). Connectivity and creativity in semantic neural networks. The 2011 International Joint Conference on Neural Networks, 3127–3133. https://doi.org/10.1109/IJCNN.2011.6033635 Mayer, R. E. (2005). The cambridge handbook of multimedia learning. Cambridge University Press. McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: A Confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60(1), 48–58. https://doi.org/10.1080/02701367.1989.10607413 Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic memory. Cognitive Science, 37(1), 125–145. https://doi.org/10.1111/cogs.12013 Mungai, B. K., Omieno, P. K. K., Dr. Mathew Egessa, PhD, & Manyara, P. N. (2024). AI chatbots in lms: A pedagogical review of cognitive, constructivist, and adaptive principles. Engineering And Technology Journal, 9(8), 4709–4715. https://doi.org/10.47191/etj/v9i08.15 Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. https://doi.org/10.1016/j.compedu.2019.103618 Nadolny, L. (2017). Interactive print: The design of cognitive tasks in blended augmented reality and print documents. British Journal of Educational Technology, 48(3), 814–823. https://doi.org/10.1111/bjet.12462 Nair, A. B. (2025). E-curating: Evolution of exhibition curation in the digital age. Journal of Heritage Management, 24559296241306783. https://doi.org/10.1177/24559296241306783 Nithuna, S., & Laseena, C. A. (2020). Review on implementation techniques of chatbot. 2020 International Conference on Communication and Signal Processing (ICCSP), 0157–0161. https://doi.org/10.1109/ICCSP48568.2020.9182168 Noh, Y.-G., & Hong, J.-H. (2021). Designing reenacted chatbots to enhance museum experience. Applied Sciences, 11(16), 7420. https://doi.org/10.3390/app11167420 Novak, M., Gramser, S., Köster, S., Ceseña, F., Gerber-Hirt, S., Schwan, S., & Lewalter, D. (2024). Presenting a socio-scientific issue in a science and technology museum: Effects on interest, knowledge and argument repertoire. Science Education, 108(1), 107–122. https://doi.org/10.1002/sce.21830 Otero-Cerdeira, L., Rodríguez-Martínez, F. J., & Gómez-Rodríguez, A. (2015). Ontology matching: A literature review. Expert Systems with Applications, 42(2), 949–971. https://doi.org/10.1016/j.eswa.2014.08.032 Pan, Y. (2024). A new perspective for the study of "five thousand years of chinese history ": Visual analysis of single text and time series text. 2024 IEEE International Conference on Big Data (BigData), 8793–8797. https://doi.org/10.1109/BigData62323.2024.10825897 Park, S. (2022). A study on visual scaffolding design principles in web-based learning environments. Electronic Journal of E-Learning, 20(2), 180–200. https://doi.org/10.34190/ejel.20.2.2604 Parsakia, K. (2023). The effect of chatbots and AI on the self-efficacy, self-esteem, problem-solving and critical thinking of students. Health Nexus, 1(1), 71–76. https://doi.org/10.61838/kman.hn.1.1.11 Peng, C., Xia, F., Naseriparsa, M., & Osborne, F. (2023). Knowledge graphs: Opportunities and challenges. Artificial Intelligence Review, 56(11), 13071–13102. https://doi.org/10.1007/s10462-023-10465-9 Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). Pintrich, P. R., Smith, D. A. F., Garcia, T., & Mckeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53(3), 801–813. https://doi.org/10.1177/0013164493053003024 Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory. Cambridge University Press. Poekert, P., & King, F. (2023). Leading professional learning to navigate complexity. Professional Development in Education, 49(6), 953–957. https://doi.org/10.1080/19415257.2023.2277572 Qu, K., Li, K. C., Wong, B. T.-M., Liu, M., Chan, V., & Lee, L.-K. (2024). Effects of a knowledge graph-based learning approach on student performance and experience. International Journal of Mobile Learning and Organisation, 18(5), 1–22. https://doi.org/10.1504/IJMLO.2024.140169 Rees, L. E. S. (2012). An interpretation of digital humanities. In D. M. Berry (Ed.), Understanding Digital Humanities (pp. 21–41). Palgrave Macmillan UK. https://doi.org/10.1057/9780230371934_2 Reinanda, R., Meij, E., & Rijke, M. de. (2020). Knowledge graphs: An information retrieval perspective. Foundations and Trends® in Information Retrieval, 14(4), 289–444. https://doi.org/10.1561/1500000063 Riding, R. J., & Sadler-Smith, E. (1997). Cognitive style and learning strategies: Some implications for training design. International Journal of Training and Development, 1(3), 199–208. https://doi.org/10.1111/1468-2419.00020 Rosli, H., Kamaruddin, N., & Isa, B. (2023). Conceptual framework of digital storytelling for museum exhibition in Malaysia. International Journal of Academic Research in Business and Social Sciences, 13(1), 1015–1026. https://doi.org/10.6007/IJARBSS/v13-i1/16174 Safi’i, I., Tarmini, W., & Wahdini, L. (2021). Critical thinking in evaluation instruments at BSE Indonesian language. KEMBARA: Jurnal Keimuan Bahasa, Sastra, Dan Pengajarannya, 7(2), 232–240. https://doi.org/10.22219/kembara.v7i2.17300 Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), 596. https://doi.org/10.3390/info15100596 Sanchez, C. A., & Roberts, Z. (2024). Examining the effects of multimodal presentations on learning spatial layouts. The Journal of Experimental Education, 1–13. https://doi.org/10.1080/00220973.2024.2306407 Schuh, M., Sheppard, J., Strasser, S., Angryk, R., & Izurieta, C. (2011). Ontology-guided knowledge discovery of event sequences in maintenance data. 2011 IEEE AUTOTESTCON, 279–285. https://doi.org/10.1109/AUTEST.2011.6058745 Shigapov, R., Schmidt, T., Kamlah, J., Schumm, I., Streb, J., & Lehmann-Hasemeyer, S. (2025). MBI-KG: A knowledge graph of structured and linked economic research data extracted from the 1937 book “Die Maschinen-Industrie im Deutschen Reich.” Data in Brief, 58, 111238. https://doi.org/10.1016/j.dib.2024.111238 Suhaili, S. M., Salim, N., & Jambli, M. N. (2021). Service chatbots: A systematic review. Expert Systems with Applications, 184, 115461. https://doi.org/10.1016/j.eswa.2021.115461 Sun, Q., Luo, Y., Zhang, W., Li, S., Li, J., Niu, K., Kong, X., & Liu, W. (2024). Docs2KG: unified knowledge graph construction from heterogeneous documents assisted by large language models (arXiv:2406.02962). arXiv. https://doi.org/10.48550/arXiv.2406.02962 Sundar, S. S., Go, E., Kim, H.-S., & Zhang, B. (2015). Communicating art, virtually! Psychological effects of technological affordances in a virtual museum. International Journal of Human–Computer Interaction, 31(6), 385–401. https://doi.org/10.1080/10447318.2015.1033912 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205 Tang, W., & Zhang, S. (2024). Exploring the role of artificial intelligence in the protection of intangible cultural heritage through short video communication. Journal of Electrical Systems, 20(3), 1085–1098. https://doi.org/10.52783/jes.3436 Thorat, S. A., & Jadhav, V. (2020, April). A review on implementation issues of rule-based chatbot systems. Proceedings of the international conference on innovative computing & communications (ICICC). https://doi.org/10.2139/ssrn.3567047 Trichopoulos, G. (2023). Large language models for cultural heritage. Proceedings of the 2nd International Conference of the ACM Greek SIGCHI Chapter, 1–5. https://doi.org/10.1145/3609987.3610018 Tsybulskaya, D., & Camhi, J. (2009). Accessing and incorporating visitors’ entrance narratives in guided museum tours. Curator: The Museum Journal, 52(1), 81–100. https://doi.org/10.1111/j.2151-6952.2009.tb00335.x Verspoor, K., Ofoghi, B., & Robles Granda, M. (2018). CommViz: Visualization of semantic patterns in large social communication networks. Information Visualization, 17(1), 66–88. https://doi.org/10.1177/1473871617693039 Wan, J., Zhang, H., Zou, J., Zou, A., Chen, Y., Zeng, Q., Li, X., & Wang, Q. (2024). WuMKG: A Chinese painting and calligraphy multimodal knowledge graph. Heritage Science, 12, 159. https://doi.org/10.1186/s40494-024-01268-4 Wang, A., Song, L., Liu, Q., Mi, H., Wang, L., Tu, Z., Su, J., & Yu, D. (2023). Search-engine-augmented dialogue response generation with cheaply supervised query production. Artificial Intelligence, 319, 103874. https://doi.org/10.1016/j.artint.2023.103874 Wang, H. (2024). Enhancing art museum experience with a chatbot tour guide. Wang, S., Li, D., Geng, J., Yang, L., & Dai, T. (2019). Learning bi-utterance for multi-turn response selection in retrieval-based chatbots. International Journal of Advanced Robotic Systems, 16(2), 1729881419841930. https://doi.org/10.1177/1729881419841930 Wang, Z., Pei, X., Zhu, H., Gong, S., & Wang, E. (2024). How to make computer-based feedback more productive: The power of erroneous solutions. Journal of Educational Computing Research, 62(6), 1419–1439. https://doi.org/10.1177/07356331241247592 Wang, Z., Yuan, L.-P., Wang, L., Jiang, B., & Zeng, W. (2024). VirtuWander: Enhancing multi-modal interaction for virtual tour guidance through large language models. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, 1–20. https://doi.org/10.1145/3613904.3642235 Wong, J., & Wong, A. (2025). Consumer resistance to service robots: A stressor-based perspective on engagement and wellbeing. Journal of Consumer Marketing, 42(1), 56–71. https://doi.org/10.1108/JCM-02-2024-6600 Wu, S. C. (2018). Visitor satisfaction and education effects in interactive archive exhibition: Taking "Tong-An ship new media art exhibition" as example. Journal of InfoLib & Archives, (93). doi:10.6575/JILA.201812_(93).0003 Wu, Y., Jiang, Q., Liang, H., & Ni, S. (2022). What drives users to adopt a digital museum? A case of virtual exhibition hall of national costume museum. Sage Open, 12(1), 21582440221082105. https://doi.org/10.1177/21582440221082105 Xiao, W., Tang, Y., Liu, J., Wu, D., Alzahrani, B., Hao, Y., & Zhou, N. (2023). Semantic-driven efficient service network towards smart healthcare system in intelligent fabric. IEEE Transactions on Network Science and Engineering, 10(5), 2480–2489. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2022.3202901 Xiao, X., Fang, Z., Zou, S., Zhang, C., & Chen, X. (2024). Effects of an intelligent cues recognition-based multilevel knowledge graphs generation method on students in online learning environments. Interactive Learning Environments, 32(9), 5801–5821. https://doi.org/10.1080/10494820.2023.2236668 Xie, K., Jia, Q., Jing, M., Yu, Q., Yang, T., & Fan, R. (2021). Data analysis based on knowledge graph. Advances on Broad-Band Wireless Computing, Communication and Applications, 376–385. https://doi.org/10.1007/978-3-030-61108-8_37 Yang, C., Jiang, S., Xian, J., & Sun, Y. (2024). Cutting-edge technical features and hedonic motivation: Keys for a wonderful journey in virtual museum. 2024 4th International Conference on Educational Technology (ICET), 295–299. https://doi.org/10.1109/ICET62460.2024.10868266 Yang, W., Du, H., Liew, Z. Q., Lim, W. Y. B., Xiong, Z., Niyato, D., Chi, X., Shen, X., & Miao, C. (2023). Semantic communications for future internet: Fundamentals, applications, and challenges. IEEE Communications Surveys & Tutorials, 25(1), 213–250. https://doi.org/10.1109/COMST.2022.3223224 Yang, Y., Bai, Z., Zhang, H., & Wang, Y. (2023). The construction and application of a cloud editing digital museum oriented to virtual tour. International Journal of Computer Games Technology, 2023(1), 7132476. https://doi.org/10.1155/2023/7132476 Ye, H., Zhang, N., Chen, H., & Chen, H. (2023). Generative knowledge graph construction: A review (arXiv:2210.12714). arXiv. https://doi.org/10.48550/arXiv.2210.12714 Yin, J., Goh, T.-T., Yang, B., & Xiaobin, Y. (2021). Conversation technology with micro-learning: The impact of chatbot-based learning on students’ learning motivation and performance. Journal of Educational Computing Research, 59(1), 154–177. Yoghourdjian, V., Yang, Y., Dwyer, T., Lawrence, L., Wybrow, M., & Marriott, K. (2020). Scalability of network visualisation from a cognitive load perspective. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1677–1687. https://doi.org/10.1109/TVCG.2020.3030459 Yu W., Jin D., Cai W., Zhao F., & Zhang X. (2022). Towards tacit knowledge mining within context: Visual cognitive graph model and eye movement image interpretation. Computer Methods and Programs in Biomedicine, 226, 107107. https://doi.org/10.1016/j.cmpb.2022.107107 Yuting, P., Yinfeng, J., & Jingli, Z. (2023). Current status of digital humanities research in Taiwan. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15851 Zhang, X., Zhang, X., & Yang, X. (2016). A study of the effects of multimedia dynamic teaching on cognitive load and learning outcome. Eurasia Journal of Mathematics, Science and Technology Education, 12(11), 2851–2860. https://doi.org/10.12973/eurasia.2016.02308a Zheng, X., Li, M., Wan, Z., & Zhang, Y. (2024). Knowledge mining and graph visualization of ancient Chinese scientific and technological documents bibliographic summaries based on digital humanities. Library Hi Tech, 42(6), 1693–1721. https://doi.org/10.1108/LHT-11-2022-0538 Zou, X. (2020). A survey on application of knowledge graph. Journal of Physics: Conference Series, 1487(1), 012016. https://doi.org/10.1088/1742-6596/1487/1/012016 |
Description: | 碩士 國立政治大學 圖書資訊與檔案學研究所 112155001 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112155001 |
Data Type: | thesis |
Appears in Collections: | [圖書資訊與檔案學研究所] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
500101.pdf | | 3949Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|