English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 82478129      Online Users : 72
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158414


    Title: 以科技接受模型觀點探討使用生成式AI與工作自我效能之關係
    The Examination of the Relationship Between Generative AI Use and Work Self-Efficacy from a Technology Acceptance Model Perspective
    Authors: 蘇詣晴
    Su, Yi-Ching
    Contributors: 胡昌亞
    Hu, Chang-Ya
    蘇詣晴
    Su, Yi-Ching
    Keywords: 生成式AI
    科技接受模型
    知覺有用性
    知覺易用性
    工作自我效能
    Generative AI
    Technology Acceptance Model (TAM)
    Perceived Usefulness
    Perceived Ease of Use
    Work Self-Efficacy
    Date: 2025
    Issue Date: 2025-08-04 13:41:21 (UTC+8)
    Abstract: 隨著生成式 AI 崛起與技術持續擴展,其大量被企業與個人運用於文字、圖像、影音等不同內容之生成,而其運用範疇則包含行銷、客服、流程優化等廣泛領域。各產業企業積極投入生成式 AI 以期待可藉此提升員工效率與整體營運效能。故此,本研究以員工使用生成式 AI 情形對於其工作自我效能為題,並以科技接受模型為基礎,藉以驗證員工於工作情境中使用生成式 AI 對於自身感知之關聯性,進而作為企業後續導入與效益評估參考依據。
    本研究以於工作場景下使用生成式 AI 工具之員工為研究對象,並透過問卷調查法,以網路社群平台發放,有效樣本共 272 份。本研究結果揭示: (ㄧ) 員工使用生成式AI之頻率會正向影響知覺有用性與知覺易用性; (二) 知覺有用性與知覺易用性對於員工工作自我效能具有正向關係; (三) 知覺有用性與知覺易用性於生成式 AI 使用頻率及工作自我效能間具有中介效果。意即,工作場景中使用生成式 AI 頻率透過知覺有用性與知覺易用性,進而正向影響員工工作效能。據此,有助於企業導入生成式 AI 時之參考,並應協助員工提升其有用性與易用性感知,以強化其工作自我效能與使用意願,進而提升企業整體營運效益。
    With the continuous advancement of generative AI, such technologies have been extensively adopted by both enterprises and individuals for generating textual, visual, and multimedia content. The application of generative AI spans a wide array of fields, including marketing, customer service, and process optimization, etc. Organizations across various industries are actively implementing generative AI with the expectation of enhancing employee productivity and overall operational efficiency. Thus, the study investigates the impact of generative AI usage on employees’ work self-efficacy, grounded in the Technology Acceptance Model (TAM) to examine employees’ perceptions of generative AI in workplace settings.
    This study targets employees who utilize generative AI tools within work contexts. Data were collected through an online questionnaire distributed via social media platforms, yielding a total of 272 valid responses. The findings reveal that: (1) the frequency of generative AI usage positively influences both perceived usefulness and perceived ease of use; (2) perceived usefulness and perceived ease of use are positively related to employees’ work self-efficacy; and (3) both perceived usefulness and perceived ease of use mediate the relationship between generative AI usage frequency and work self-efficacy. In other words, the frequency with which generative AI is used in the workplace positively affects employees’ work self-efficacy via their perceptions of usefulness and ease of use. These results provide practical implications for organizations introducing generative AI, suggesting the importance of fostering employees’ positive perceptions of usefulness and ease of use to enhance both their self-efficacy and willingness to adopt such technologies, ultimately contributing to improved organizational performance.
    Reference: 王存國 (2022)。人工的智慧、信任與情感。人文與社會科學簡訊,65-71。
    王偉霖、張家齊 (2024)。生成式AI風險控管與企業應用倡議。月旦法學雜誌,345, 107-118。https://doi.org/10.53106/1025593134506。
    李春麟、方文昌 (2013)。科技接受模式再探討:整合資訊科技外部變數之論點。企業管理學報(97),1-37。
    杜佩佳、劉生敏 (2024)。人工智能应用对员工心理的双刃剑影响。运筹与模糊学,14,541-547。https://doi.org/10.12677/orf.2024.144422。
    卓正欽、賴彥如、劉振緯 (2015)。轉換型領導與新科技使用意圖之關係:自我效能之中介效果。商管科技季刊,16(1),89-111。
    陳禹辰、尚榮安、劉蔚廷 (2010)。以TAM與TTF探討組織員工的e化科技接受意圖-組織疏離員工的組織學習效應。資訊管理學報,17(4),139-169。https://doi.org/10.6382/JIM.201010.0139
    廖紫柔、林小甘、張務華、胡宛翎 (2025)。探討科技接受模式、科技焦慮、使用者忠誠度之結構關係:以生成式AI工具為例。管理資訊計算,14(1),71-83。https://doi.org/10.6285/MIC.202503_14(1).0007。
    蔡庭瑋、劉鈺承、劉明憲、吳宗霖、劉祥得 (2022)。自我效能感和科技接受理論之因果模式分析。通識論叢(25),41-54。
    AWS (2024)。生成式 AI 使用案例。上網日期 2025年2月21日,檢自:https://aws.amazon.com/tw/ai/generative-ai/use-cases/
    Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co.
    Bick, A., Blandin, A., & Deming, D. J. (2025). The Rapid Adoption of Generative AI.
    Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at work. The Quarterly Journal of Economics, qjae044.
    Choi, Y. (2021). A study of employee acceptance of artificial intelligence technology. European Journal of Management and Business Economics, ahead-of-print. https://doi.org/10.1108/EJMBE-06-2020-0158
    Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemme, R. (2023). The economic potential of generative AI: The next productivity frontier.
    Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688
    Davis, F. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
    Dell’Acqua, F., Ayoubi, C., Lifshitz, H., Sadun, R., Mollick, E., Mollick, L., Han, Y., Goldman, J., Nair, H., Taub, S., & Lakhani, K. R. (2025). The cybernetic teammate: A field experiment on generative AI reshaping teamwork and expertise (Working Paper No. 25-043). https://papers.ssrn.com/abstract=5188231
    Douglas, S. P., & Craig, C. S. (2007). Collaborative and iterative translation: An alternative approach to back translation. Journal of International Marketing, 15(1), 30-43. https://doi.org/10.1509/jimk.15.1.030
    Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D.,…Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Gartner. (2023). Gartner predicts 80% of large enterprise finance teams will use internal AI platforms by 2026. Retrieved May from https://www.gartner.com/en/newsroom/press-releases/2023-09-18-gartner-predicts-80percent-of-large-enterprise-finance-teams-will-use-internal-ai-platforms-by-2026
    Guilford, J. P. (1965). Fundamental Statistics in Psychology and Education. McGraw-Hill.
    Hai, S., Long, T., Honora, A., Japutra, A., & Guo, T. (2025). The dark side of employee-generative AI collaboration in the workplace: An investigation on work alienation and employee expediency. International Journal of Information Management, 83, 102905. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2025.102905
    Kim, J., & Kim, H. (2025). User perceptions and intentions to continue using generative AI tools in the design process. Edelweiss Applied Science and Technology, 9, 24-31. https://doi.org/10.55214/25768484.v9i4.5933
    Luthans, F., & Youssef-Morgan, C. (2004). Human, social, and now positive psychological capital management. Organizational Dynamics, 33, 143-160. https://doi.org/10.1016/j.orgdyn.2004.01.003
    Luthans, F., Youssef, C. M., & Avolio, B. J. (2006). Psychological capital: Developing the human competitive edge. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195187526.001.0001
    Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187-192. https://doi.org/10.1126/science.adh2586
    Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253-318. http://www.jstor.org/stable/90707
    Reuters. (2025). JPMorgan says AI helped boost sales, add clients in market turmoil. Retrieved May 14 from https://www.reuters.com/business/finance/jpmorgan-says-ai-helped-boost-sales-add-clients-market-turmoil-2025-05-05/
    Rigotti, T., Schyns, B., & Mohr, G. (2008). A short version of the occupational self-efficacy scale: Structural and construct validity across five countries. Journal of Career Assessment, 16(2), 238-255. https://doi.org/10.1177/1069072707305763
    Shen, Y., Heacock, L., Elias, J., Hentel, K. D., Reig, B., Shih, G., & Moy, L. (2023). ChatGPT and other large language models are double-edged swords. Radiology, 307(2), e230163. https://doi.org/10.1148/radiol.230163
    Stajkovic, A., & Luthans, F. (1998). Self-efficacy and work-related performance: A meta-analysis. Psychological Bulletin, 124, 240-261. https://doi.org/10.1037/0033-2909.124.2.240
    Tarafdar, M., Cooper, C., & Stich, J.-F. (2019). The technostress trifecta - Techno eustress, techno distress and design: Theoretical directions and an agenda for research. Information Systems Journal, 29, 6-42. https://doi.org/10.1111/isj.12169/full
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
    Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36, 157-178. https://doi.org/10.2307/41410412
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
    Zhang, L., & Xu, J. (2025). The paradox of self-efficacy and technological dependence: Unraveling generative AI's impact on university students' task completion. The Internet and Higher Education, 65, 100978. https://doi.org/https://doi.org/10.1016/j.iheduc.2024.100978
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    110363022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110363022
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    302201.pdf1008KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback