Reference: | Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot Learners. Neural Information Processing Systems, 33, 1877–1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. On The Dangers of Stochastic Parrots: Can Language Models Be Too Big?, 610–623. https://doi.org/10.1145/3442188.3445922
Chase, L. (2022). LangChain: Building applications with LLMs through composability. GitHub Documentation.
Gharge, S., & Chavan, M. (2017). An integrated approach for malicious tweets detection using NLP. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT). https://doi.org/10.1109/icicct.2017.7975235
Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems 27, Montreal, Quebec, Canada, 2014, pp. 2672−2680.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. In MIT Press eBooks. https://dl.acm.org/citation.cfm?id=3086952
Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. (2020, February 10). REALM: Retrieval-Augmented Language Model Pre-Training. arXiv.org. https://arxiv.org/abs/2002.08909
Hearst, M. A. (2009). Search user interfaces. http://ci.nii.ac.jp/ncid/BA91702558
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 06(02), 107–116. https://doi.org/10.1142/s0218488598000094
Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degeneration. arXiv (Cornell University). https://arxiv.org/pdf/1904.09751.pdf
Izacard, G., & Grave, E. (2020, July 2). Leveraging Passage Retrieval with
Generative Models for Open Domain Question Answering. arXiv.org. https://arxiv.org/abs/2007.01282
Johnson, J., Douze, M., & Jégou, H. (2017, February 28). Billion-scale similarity search with GPUs. arXiv.org. https://arxiv.org/abs/1702.08734
Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. Dense Passage Retrieval for Open-domain Question Answering. https://doi.org/10.18653/v1/2020.emnlp-main.550
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539
Maynez, J., Narayan, S., Bohnet, B., & McDonald, R. (2020, May 2). On faithfulness and factuality in abstractive summarization. arXiv.org. https://arxiv.org/abs/2005.00661
Manning, C. D., Raghavan, P., & Schütze, H. (2009). Introduction to information retrieval.
Choice Reviews Online, 46(05), 46–2715. https://doi.org/10.5860/choice.46-2715
Mitra, B., & Craswell, N. (2018). An Introduction to Neural Information Retrieval t.
Foundations and Trends® in Information Retrieval, 13(1), 1–126. https://doi.org/10.1561/1500000061
Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent
neural network based language model. Interspeech 2022. https://doi.org/10.21437/interspeech.2010-343
Masterman, T., Besen, S., Sawtell, M., & Chao, A. (n.d.). The landscape of emerging AI agent architectures for reasoning, planning, and tool calling: a survey. arXiv.org. https://arxiv.org/abs/2404.11584
Nogueira, R., & Cho, K. (2019, January 13). Passage Re-ranking with BERT. arXiv.org. https://arxiv.org/abs/1901.04085
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval Vol. 2, No 1-2, 1–135 http://dx.doi.org/10.1561/1500000011
Robertson, S., & Zaragoza, H. (2009). The Probabilistic Relevance Framework: BM25 and
beyond. Foundations and Trends® in Information Retrieval, 3(4), 333–389. https://doi.org/10.1561/1500000019
Ramit Sawhney, Harshit Joshi, Saumya Gandhi, and Rajiv Ratn Shah. 2020.
A Time-Aware Transformer Based Model for Suicide Ideation Detection on Social Media. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7685–7697, Online. Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.619
Shuster, K., Poff, S., Chen, M., Kiela, D., & Weston, J. (2021). Retrieval augmentation reduces hallucination in conversation. Empirical Methods in Natural Language Processing, 3784–3803. https://aclanthology.org/2021.findings-emnlp.320/
Trabelsi, M., Chen, Z., Davison, B. D., & Heflin, J. (2021). Neural ranking models for
document retrieval. Information Retrieval, 24(6), 400–444. https://doi.org/10.1007/s10791-021-09398-0
Thorne, J., & Vlachos, A. (2018). Automated fact checking: task formulations, methods and future directions. arXiv (Cornell University), 3346–3359. https://arxiv.org/pdf/1806.07687.pdf
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. Advances in neural information processing systems, 30.
https://doi.org/10.48550/arXiv.1706.03762
Yasunaga, M., Ren, H., Bosselut, A., Liang, P., & Leskovec, J. (2021). QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. https://doi.org/10.18653/v1/2021.naacl-main.45
Zhang, Y., Ni, A., Mao, Z., Wu, C. H., Zhu, C., Deb, B., Awadallah, A. H., Radev, D., & Zhang, R. (2021, October 16). SUMM^N: a Multi-Stage summarization framework for long input dialogues and documents. arXiv.org. https://arxiv.org/abs/2110.10150
Zhang, T., Ladhak, F., Durmus, E., Liang, P., McKeown, K., & Hashimoto, T. B. (2023, January 31). Benchmarking large language models for news summarization. arXiv.org. https://arxiv.org/abs/2301.13848 |