English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116849/147881 (79%)
Visitors : 63794875      Online Users : 68
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157862


    Title: 利用混合頻率群組因子模型分析台灣產業對整體經濟的影響
    Analysis of the impact of Taiwan's industries on the overall economy by using mixed-frequency group factor model
    Authors: 李卓穎
    Lee, Jhuo-Ying
    Contributors: 徐士勛
    李卓穎
    Lee, Jhuo-Ying
    Keywords: 群組因子模型
    混合頻率資料
    主成分分析
    Group factor model
    Mixed-frequency data
    Principal component analysis
    Date: 2025
    Issue Date: 2025-07-01 15:35:06 (UTC+8)
    Abstract: 近年來,因子模型已成為總體經濟與金融領域分析潛在共同驅動因素的重要工具,特別適用於大量維度的追蹤資料。然而,傳統因子模型大多假設所有變數受相同因子影響,忽略資料可能存在的群組結構與異質性,進而降低解釋力。此外,經濟資料常以不同時間頻率發布,如月頻率、季頻率及年頻率,若未妥善整合混合頻率資訊,將可能造成估計偏誤與資訊損失。有鑑於此,Andreou et al. (2019) 提出混合頻率群組因子模型(Mixed-Frequency Group Factor Model),有效結合高頻與低頻資料,並捕捉群組內外之共同與特定因子。本研究即以該方法為基礎,應用於台灣經濟資料,探討工業與非工業部門是否存在共同驅動因素,或各部門經濟表現之群組特定因子。

    實證部分,我們選取1984-2023年間,台灣工業部門29種行業之月頻率工業生產指數增減率,以及非工業部門32種行業之年度實質GDP增減率,構成高頻與低頻群組。透過Bai and Ng (2002)提出之資訊準則決定各群組總因子數量,採用主成分分析(PCA)與典型相關分析(CCA)估計共同與特定因子,並運用貝氏資訊準則(BIC)與調整$R$平方比較各類因子組合之模型適配度。結果顯示,單一共同因子無法充分解釋台灣各產業經濟表現之波動;但納入群組特定因子後,模型解釋能力顯著提升。此外,經由ACF檢驗發現共同因子具持續性,特定因子則反映短期波動。本研究驗證了混合頻率群組因子模型於台灣資料之適用性,期盼能作為後續實證應用參考。
    In recent years, factor models have become an essential tool in macroeconomics for analyzing potential common driving factors, but traditional approaches are limited by ignoring group structures and the challenges of mixed-frequency data, which can reduce explanatory power and cause estimation bias. This study applies the Mixed-Frequency Group Factor Model (Andreou et al., 2019) to Taiwan economic data to investigate common and group-specific factors between the industrial and non-industrial sectors.

    For the empirical analysis, we use data from 1984 to 2023, comprising the monthly growth rate of the industrial production index for 29 industries in industrial sector (the high-frequency group) and the annual real GDP growth rate for 32 industries in the non-industrial sector (the low-frequency group) of Taiwan. The information criteria proposed by Bai and Ng (2002) are used to determine the total number of factors for each group. We employ Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to estimate the common and specific factors, and then use the Bayesian Information Criterion (BIC) and adjusted R-squared to compare the model fit for various factor combinations.

    The results indicate that a single common factor cannot adequately explain the economic fluctuations across Taiwan's industries; however, the model's explanatory power is significantly improved by including group-specific factors. Moreover, an ACF test reveals that the common factor exhibits persistence, whereas the specific factors reflect short-term fluctuations. This research validates the applicability of the Mixed-Frequency Group Factor Model to Taiwanese data, with the hope that it will serve as a reference for future empirical applications.
    Reference: 吳易樺、黃朝熙、劉子衙(2014)。時間序列模型對我國產業成長預測之優劣比較。應用經濟論叢,96,35-68。https://doi.org/10.3966/054696002014120096002

    Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2019). Inference in group factor models with an application to mixed‐frequency data. Econometrica, 87(4), 1267-1305. https://doi.org/10.3982/ECTA14690

    Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2020). Mixed-frequency macro–finance factor models: Theory and applications. Journal of Financial Econometrics, 18(3), 585-628. https://doi.org/10.1093/jjfinec/nbaa015

    Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135-171. https://doi.org/10.1111/1468-0262.00392

    Bai, J., & Ando, T. (2013). Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors [Unpublished manuscript]. MPRA Paper No. 52785, University Library of Munich, Germany. https://mpra.ub.uni-muenchen.de/52785/

    Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191-221. https://doi.org/10.1111/1468-0262.00273

    Bykhovskaya, A., & Gorin, V. (2024). Canonical correlation analysis: Review. arXiv preprint arXiv:2411.15625. https://doi.org/10.48550/arXiv.2411.15625

    Chen, K. H., & Yang, H. Y. (2010). Appraising the Economic Impact of the “Opening up to Mainland Chinese Tourist Arrivals” Policy on Taiwan with a Tourism-CGE Model. Asia Pacific Journal of Tourism Research, 15(2), 155–175. https://doi.org/10.1080/10941661003629961

    Chen, P. (2010). A grouped factor model [Unpublished manuscript]. MPRA Paper No. 36082. University Library of Munich, Germany. https://mpra.ub.uni-muenchen.de/36082/

    Chen, P. (2012). Common factors and specific factors [Unpublished manuscript]. MPRA Paper No. 36114. University Library of Munich, Germany. https://mpra.ub.uni-muenchen.de/36114/

    Flury, B. N. (1984). Common principal components in k groups. Journal of the American Statistical Association, 79(388), 892-898. https://doi.org/10.1080/01621459.1984.10477108

    Foerster, A. T., Sarte, P. D. G., & Watson, M. W. (2011). Sectoral versus aggregate shocks: A structural factor analysis of industrial production. Journal of Political Economy, 119(1), 1-38. https://doi.org/10.1086/659311

    Gou, Z., & Fyfe, C. (2000). Generalised canonical correlation analysis. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 164-173). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44491-2_25

    Goyal, A., Pérignon, C., & Villa, C. (2008). How common are common return factors across the NYSE and Nasdaq?. Journal of Financial Economics, 90(3), 252-271. https://doi.org/10.1016/j.jfineco.2008.01.004

    Harris, R. J. (2001). A primer of multivariate statistics (3rd ed.). Psychology Press. https://doi.org/10.4324/9781410600455

    Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417-441. https://psycnet.apa.org/doi/10.1037/h0071325

    Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321–377. https://doi.org/10.2307/2333955

    Jackson, J. E. (2005). A user's guide to principal components (2nd ed.). Wiley. https://doi.org/10.1002/0471725331

    Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer. https://doi.org/10.1007/b98835

    Jörg, B., & Sandra, E. (2016). Analyzing international business and financial cycles using multi-level factor models: A comparison of alternative approaches. In Dynamic factor models (Vol. 35, pp. 177-214). Emerald Group Publishing Limited. https://doi.org/10.1108/s0731-905320150000035005

    Kose, M. A., Otrok, C., & Whiteman, C. H. (2003). International business cycles: World, region, and country-specific factors. American Economic Review, 93(4), 1216-1239. https://doi.org/10.1257/000282803769206278

    Kose, M. A., Otrok, C., & Whiteman, C. H. (2008). Understanding the evolution of world business cycles. Journal of International Economics, 75(1), 110–130. https://doi.org/10.1016/j.jinteco.2007.10.002

    Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572. https://doi.org/10.1080/14786440109462720

    Schott, J. R. (1991). Some tests for common principal component subspaces in several groups. Biometrika, 78(4), 771-777. https://doi.org/10.1093/biomet/78.4.771

    Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American statistical association, 97(460), 1167-1179. https://doi.org/10.1198/016214502388618960

    Thompson, B. (1984). Canonical correlation analysis: Uses and interpretation. Sage. https://doi.org/10.4135/9781412983570

    Tucker, L. R. (1958). An inter-battery method of factor analysis. Psychometrika, 23(2), 111-136. https://doi.org/10.1007/BF02289009

    Wang, P. (2012). Large dimensional factor models with a multi-level factor structure: Identification, estimation, and inference [Unpublished manuscript]. Hong Kong University of Science and Technology.
    Description: 碩士
    國立政治大學
    經濟學系
    112258024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112258024
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802401.pdf8566KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback