English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116849/147881 (79%)
Visitors : 64158144      Online Users : 161
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/157836
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157836


    Title: 強化S&P 500報酬預測: 結合PCR、PLS及反轉法於SOP框架中
    Enhancing S&P 500 Return Prediction: Integrating PCR, PLS, and Reversion into the SOP Framework
    Authors: 廖睿辰
    Liao, Rui-Chen
    Contributors: 林靖庭
    羅秉政

    Lin, Ching-Ting
    Luo, Bing-Zheng

    廖睿辰
    Liao, Rui-Chen
    Keywords: 股市
    分部法
    預測
    主成份分析
    偏最小平方法
    stock market
    sum-of-the-parts
    prediction
    principal component analysis
    partial least squares
    Date: 2025
    Issue Date: 2025-07-01 15:17:34 (UTC+8)
    Abstract: 本研究使用S&P 500指數由1991年1月至2024年3月之價格資料,以及該期間的數個總體經濟數據,透過 SOP (Sum-of-the-part) 方法來建構股市報酬預測模型。研究發現reversion加上PLS的第一模型組合 (REPLS1) 在預測效能上表現最佳,遠超越過去傳統SOP方法的預測表現,而在Markowitz optimal weight的交易策略當中則是單純PLS模型表現最好,在使用7個主成分時Sharpe ratio達2.77
    、確定等值 (certainty equivalent) 達48.67,同時發現MOP (momentum-of-predictability) 預測限制方法可以廣泛的改善所有的模型組合表現。總體而言,本研究的結果表明,過去的傳統SOP模型在近年的股市報酬預測表現已不如以往,甚至不論是在預測準確度於策略Sharpe ratio上皆略遜於基準模型 (歷史平均法),不過在經過本研究中多個方法增強模型預測能力後發現SOP法仍能夠為較複雜的模型增加預測的效能,因此仍建議在預測股市報酬時採用 SOP 法的框架,除此之外,在本研究中發現REPLS1所有主成分模型組合於兩個子期間 (2016年~2019年、2020年~2024年) 皆可保持高水準的預測效果,不同於其他模型組合,在疫情與後疫情期間預測能力明顯減弱。
    This study utilizes the price data of the S&P 500 Index from January 1991 to March 2024, along with several macroeconomic indicators during the same period, to construct a stock return prediction model using the Sum-of-the-Parts (SOP) method. The findings reveal that the first model combination of reversion and PLS (REPLS1) demonstrates the best predictive performance, significantly surpassing traditional SOP methods. In trading strategies based on Markowitz optimal weight, the pure PLS model performed the best, achieving a Sharpe ratio of 2.56 and a certainty equivalent of 48.67 when using eight principal components. Additionally, the Momentum-of-Predictability (MOP) restriction method was found to broadly enhance the performance of all model combinations. Overall, the results indicate that traditional SOP models have underperformed in recent years in terms of both predictive accuracy and strategy Sharpe ratio, even when compared to benchmark models such as historical averages. However, after enhancing the predictive capabilities of the SOP framework with the methods proposed in this study, SOP still proves to be beneficial for improving the performance of more complex models. Furthermore, it was found that the REPLS1 model combination with all principal components maintained high predictive performance in two subperiods (2016–2019 and 2020–2024), unlike other model combinations whose performance significantly declined during the pandemic and post-pandemic periods.
    Reference: Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2007). Stock return predictability: Is it there? Review of Financial Studies, 20(3), 651–707.
    Brandt, M. W., Kang, Q., & Santa-Clara, P. (2004). On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach. Journal of Financial Economics, 72(2), 217–257.
    Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Economics, 18(2), 373–399.
    Campbell, J. Y., Giglio, S., Polk, C., & Turley, R. (2006). Efficient tests of stock return predictability. Journal of Financial Economics, 81(1), 27–60.
    Clark, T. E., & McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing for nested models. Journal of Econometrics, 105(1), 85–110.
    Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22(1), 3–25.
    Fama, E. F., & Schwert, G. W. (1977). Asset returns and inflation. Journal of Financial Economics, 5(2), 115–146.
    Ferreira, M. A., & Santa-Clara, P. (2011). Forecasting stock market returns: The sum of the parts is more than the whole. Journal of Financial Economics, 100(3), 514–537.
    Ghysels, E., Santa-Clara, P., & Valkanov, R. (2005). There is a risk-return trade-off after all. Journal of Financial Economics, 76(3), 509–548.
    Kothari, S. P., Shanken, J., & Sloan, R. G. (1997). Book-to-market, dividend yield, and expected market returns: A time-series analysis. Journal of Financial Economics, 44(2), 169–203.
    Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial Economics, 74(2), 209–235.
    Ludvigson, S. C., & Ng, S. (2007). The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83(1), 171–222.
    Liu, C., Zhang, X., Nguyen, T. T., Liu, J., Wu, T., Lee, E., & Tu, X. M. (2022). Partial least squares regression and principal component analysis: Similarity and differences between two popular variable reduction approaches. General Psychiatry, 35(1), e100662.
    McCracken, M. W. (2007). Asymptotic tests of predictive ability. Journal of Econometrics, 138(1), 291–311.
    McCracken, M. W. (2007). Asymptotics for out-of-sample tests of Granger causality. Journal of Econometrics, 140(2), 719–752.
    Meese, R. A., Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1–2), 3–24.
    Pontiff, J., & Schall, L. D. (1998). Book-to-market ratios as predictors of market returns. Journal of Financial Economics, 49(2), 141–160.
    Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics, 54(3), 375–421.
    Valkanov, R. (2003). Long-horizon regressions: Theoretical results and applications. Journal of Financial Economics, 68(1), 201–232.
    Wang, Y., Liu, L., Ma, F., & Diao, X. (2018). Momentum of return predictability. Journal of Empirical Finance, 45, 141–156.
    Description: 碩士
    國立政治大學
    金融學系
    112352021
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112352021
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202101.pdf3372KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback