English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 116849/147881 (79%)
造訪人次 : 64141974      線上人數 : 36
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/157749
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/157749


    題名: 二維謝爾賓斯基墊片上非有序性單體-二聚體的漸進行為
    Asymptotic Behavior of Disordered Monomer-Dimer Model on Two Dimensional Sierpinski Gasket
    作者: 陳柏維
    Chen, Bo-Wei
    貢獻者: 陳隆奇
    Chen, Lung-Chi
    陳柏維
    Chen, Bo-Wei
    關鍵詞: 二聚體-單體模型
    謝爾賓斯基墊片
    遞迴關係
    漸近增長
    Dimer-monomer model
    Sierpinski gasket
    Recursion relation
    Asymptotic growth
    日期: 2025
    上傳時間: 2025-07-01 14:40:30 (UTC+8)
    摘要: 我們考慮部署無序單體-二聚體在二維謝爾賓斯基墊片 $SG_n$ 上,並個別賦予單體及二聚體一個為正數的權重 $hi$ 和 $si$。我們研究該模型隨著 $n$ 增大時的漸近行為,並推導出配分函數的上界和下界。基於配分函數的上界和下界,估計配分函數的熵,推導隨著 $n$ 增大時熵的上下界且證明其收斂速度非常快。
    In this thesis, we consider a disordered monomer-dimer model on the two-dimensional Sierpinski gasket at stage $n$ as $n\to\infty$, where we assign positive weights $\mathcal{m}$ and $\mathcal{d}$ to monomers and dimers, respectively. We investigate the asymptotic behavior of the model as $n$ grows and derive upper and lower bounds for the partition function with the rapid convergence rate. Furthermore, we provide estimations for the entropy of the partition function, which help to better understand the behavior of the model on the fractal structure.
    參考文獻: [1] Ole J Heilmann and Elliott H Lieb. Theory of monomer-dimer systems. Communications in mathematical Physics, 25(3):190–232, 1972.
    [2] Weigen Yan and Yeong-Nan Yeh. On the matching polynomial of subdivision graphs. Discrete Applied Mathematics, 157(1):195–200, 2009.
    [3] Alexandra Quitmann. Decay of correlations in the monomer-dimer model. Journal of Mathematical Physics, 65(10), 2024.
    [4] F. Y. Wu, Wen-Jer Tzeng, and N. Sh. Izmailian. Exact solution of a monomer-dimer problem: A single boundary monomer on a nonbipartite lattice. Phys. Rev. E, 83:011106, Jan 2011.
    [5] FY Wu. Erratum: Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary [phys. rev. e 74, 020104 (r)(2006)]. Physical Review E— Statistical, Nonlinear, and Soft Matter Physics, 74(3):039907, 2006.
    [6] Shu-Chiuan Chang and Lung-Chi Chen. Dimer-monomer model on the sierpinski gasket. Physica A: Statistical Mechanics and its Applications, 387(7):1551–1566, 2008.
    [7] Partha S Dey and Kesav Krishnan. Disordered monomer-dimer model on cylinder graphs. Journal of Statistical Physics, 190(8):146, 2023.
    [8] Shu-Chiuan Chang and Lung-Chi Chen. Asymptotic behavior of a generalized independent sets model on the two-dimensional sierpinski gasket. Journal of Mathematical Physics, 65(6), 2024.
    描述: 碩士
    國立政治大學
    應用數學系
    109751014
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109751014
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101401.pdf370KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋