English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 116849/147881 (79%)
造訪人次 : 63794912      線上人數 : 82
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/157684


    題名: 臺灣長期照顧基金收入與支出之中長期財務預測:2025年至2050年
    Medium to Long-Term Financial Forecasting of Taiwan's Long-Term Care Fund Revenue and Expenditure: 2025-2050
    作者: 陳宜嬰
    Chen, Yi-Yin
    貢獻者: 傅健豪
    韓幸紋

    陳宜嬰
    Chen, Yi-Yin
    關鍵詞: 長期照顧基金
    長照基金收入
    長照基金支出
    長照需求
    Long-Term Care Fund
    LTC Fund Revenue
    LTC Fund Expenditure
    Long-Term Care Demand
    日期: 2025
    上傳時間: 2025-07-01 14:20:32 (UTC+8)
    摘要: 隨著台灣邁入超高齡社會,長期照顧需求人數將增加,進而導致長期照顧支出上升,在支出不斷攀升下,長照基金是否會出現財務危機,亟待進行財務預測。本研究以2025年至2050年為預測期間,分析長照基金收入與支出之發展趨勢,並探討未來財務缺口的規模與發生時點,以供政策調整與財政規劃之參考。
    在收入面推估上,本研究採用向量自我迴歸模型與向量誤差修正模型,對菸稅、遺產稅、贈與稅與房地合一稅進行預測。根據本研究推估結果顯示,至推估後期房地合一稅占長照基金比例約八成,顯示長照基金極度依賴房地合一稅之挹注,但房地合一稅容易受到市場、政策的影響,為降低財務風險,建議政府積極拓展其他稅源或調整基金運作機制。
    在支出面推估部分,本研究分為高推估與低推估兩種情境,在高推估情境下,假設長照支出隨著本研究長照需求高推估人數成長率與獨居、老老家庭占比成長率成長;在低推估情境下則假設,長照支出隨著本研究長照需求低推估人數成長率與獨居、老老家庭占比成長率成長。根據本研究推估結果,在高推估情境下,長照支出從2025年817億元成長至2050年2,111億元;低推估情境則從2025年816億元上升至2050年2,097億元。
    最後,綜合收入與支出推估結果,本研究針對四種財務情境(財務樂觀、財務悲觀、高收入高支出、低收入低支出)進行分析。推估結果顯示,在四種情境中,僅財務樂觀情境、高收入高支出情境能於推估期末維持累積賸餘;其餘兩種情境皆於2045年轉為累積短絀。顯示長照基金未來財務能否穩健運作,關鍵在於收入面是否充足,而本研究長照收入高、低推估情境主要差別在於房地合一稅撥補比例設定不同,建議政府未來若有意提高房地合一稅挹注至住宅基金的比例時,應參考本研究推估結果規劃其他可補足缺口的穩定財源。
    As Taiwan enters a super-aged society, the number of people requiring long-term care is expected to increase, subsequently leading to a rise in long-term care expenditures. With spending continuously climbing, there is an urgent need to forecast whether the Long-Term Care (LTC) Fund may face a financial crisis. This study forecasts the revenue and expenditure trends of Taiwan’s LTC Fund from 2025 to 2050 and examines the scale and timing of potential financial shortfalls to inform future policy adjustments and fiscal planning.
    On the revenue side, this study employs Vector Autoregression and Vector Error Correction Models to forecast four major tax sources: tobacco tax, estate tax, gift tax, and the integrated housing and land tax. According to the projections, by the later years of the forecast period, the integrated housing and land tax will account for approximately 80% of the LTC Fund’s revenue, indicating a heavy reliance on this tax source. However, as this tax is susceptible to market fluctuations and policy changes, the study recommends that the government diversify revenue sources or adjust fund mechanisms to mitigate financial risks.
    For expenditure projections, the study adopts two scenarios—high and low. In the high-expenditure scenario, LTC spending grows in line with the high-growth estimate of care demand and the increasing proportion of elderly living alone or in elderly-only households. In the low-expenditure scenario, spending follows the low-growth estimate of care demand and demographic changes in living arrangements. Under the high scenario, LTC expenditures rise from NT$81.7 billion in 2025 to NT$211.1 billion in 2050; under the low scenario, they grow from NT$81.6 billion in 2025 to NT$209.7 billion in 2050.
    Finally, based on the revenue and expenditure forecasts, this study analyzes four financial scenarios: fiscally optimistic, fiscally pessimistic, high income–high expenditure, and low income–low expenditure. The results show that only the fiscally optimistic and high income–high expenditure scenarios maintain a cumulative surplus by the end of the forecast period, while the other two scenarios shift into cumulative deficits around 2045. These findings highlight that the financial sustainability of the LTC Fund critically depends on the adequacy of revenue. Since the main difference between the high- and low-income scenarios lies in the allocation ratio of the integrated housing and land tax, this study suggests that if the government intends to increase the proportion of this tax allocated to the Housing Fund, it should also plan for other stable revenue sources to cover potential funding gaps based on the projected results.
    參考文獻: 一、 中文部分
    丁誌魰、曾富敏(2005)。以向量自我迴歸模式探討臺灣股價、成交量、融資融券與法人進出之關聯性。真理財經學報,(13),43-74。https://doi.org/10.29963/TOJEB.200512.0003
    王姿涵(2018)。我國政府長期照顧制度財源籌措與政策配套措施之探討〔碩士論文,嶺東科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0103-2208201813122500
    王香蘋(2003)。臺灣老人罹病, 活動功能, 及健康自評的分析: 1989 年-1996 年。
    古坤榮(1995)。我國綜合所得稅收入預測方法之研究。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/q6t5j7。
    江枝華(2003)。所得稅稅收預測及其管理之研究。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/js65ur。
    吳曼亘(2023)。子代性別差異對不動產贈與傾向之研究。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/xff6qq。
    李川源、林華德(1979)。台灣地區所得稅收之預測。
    李懷彬(1994)。我國民營企業所得稅收入預測方法之研究。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統https://hdl.handle.net/11296/6wm22q。
    林左裕、程于芳(2014)。影響不動產市場之從眾行為與總體經濟因素之研究。應用經濟論叢,(95),61-99。https://doi.org/10.3966/054696002014060095003
    林倩瑩(2020)。利用長短期遞迴類神經網路建構地方政府稅收預測模式之研究-以地價稅為例。﹝碩士論文。元智大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/27dw7j。
    林楚蕎(2024)。影響日本不動產價格之總體經濟因素。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/qqa5k9。
    林融生(2019)。人口結構與都會區房價決定因素之研究。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/fpjj9y。
    邱文法(2004)。運用灰模型GM(1,1)預測稅收之研究。﹝碩士論文。義守大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/627cex。
    柯瓊芳(2002)。誰來照顧老人? 歐盟各國奉養態度的比較分析。人口學刊, 24, 1-32。
    倪仁禧、吳明哲、張萃負(2009)。以VAR模型預測人民幣匯率之波動。中華管理發展評論,1(2),175-190。https://doi.org/10.6631/JCMD.2009.1.2.175
    許美華(2019)。影響我國行政區域遺產稅稅收因素之分析。﹝碩士論文。國立中正大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/vz353j。
    許義忠、余政諭、沈政安、歐俊男(2022)。臺灣地區地方不動產税收因素之研究。應用經濟論叢,(111),179-226。https://doi.org/10.53106/054696002022060111005
    陳玉政(2014)。遺產稅及贈與稅率調降對稅收影響之研究 -以財政部臺北國稅局資料為例。﹝碩士論文。東吳大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/whkrv3。
    陳廷婕(2016)。亞洲國家間的貿易關係研究-VAR模型分析。﹝碩士論文。國立高雄大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5wr62v。
    陳國樑、楊佩烜、黃勢璋(2020)。臺灣稅收預測表現之探討。人文及社會科學集刊,32(2),271-319。https://www.airitilibrary.com/Article/Detail?DocID=1018189X-202006-202007080011-202007080011-271-319
    彭琇嫦(2008)。賦稅收入預測模型之研究。﹝碩士論文。輔仁大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/k562kq。
    黃美玲(2011)。建構所得稅預測模式之研究。﹝碩士論文。臺中技術學院﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/975pmf。
    黃惠麗(2018)。影響台灣菸酒稅收因素之研究。﹝碩士論文。朝陽科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5v254k。
    楊佩烜(2018)。臺灣稅收預測探討〔碩士論文,國立政治大學〕。華藝線上圖書館。https://doi.org/10.6814/THE.NCCU.PF.028.2018.F07
    楊詠淳(2024)。臺灣區域房價影響因素分析。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/6s847m。
    經濟日報新聞稿。央行重手打炒房11月個人房地合一稅增幅探14月新低。上網日期2024年12月11日,檢自:https://money.udn.com/money/story/6710/8419531
    廖家瑩(2015)。六都稅收預測分析。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/x26835。
    劉正(2000)。〈研究同居意願與家戶組成等相關議題的初步想法〉。《教育社會學通訊》,第 22 期,頁 15-21。
    蔡招榮、林華德(1979)。台灣財產稅月稅收預測隨機時間序列之應用。
    衛生福利部(2016)。長期照顧十年計劃 2.0核定本。
    鄭文輝、朱澤民、鄭清霞(2009)。長期照護保險法制財務機制及財源籌措之評估。行政院經濟建設委員會委託研究案。
    鄭清霞、陳正芬、王靜怡、陳明芳(2010)。長期照護保險費用估算、費率精算及調整機制之探討。行政院衛生署委託計劃。
    鄭清霞、陳正芬、王靜怡、陳明芳、李光廷(2012)。建構我國長期照護保險精算模型。行政院衛生署委託計劃。
    鄭清霞、鄭文輝(2007)。我國長期照顧制度的費用估算與財務處理。臺大社會工作學刊, (15), 167-218。
    盧珉卉(2021)。利率對台北市房價的影響:以中古屋市場作為探討。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/czcmsp。
    鍾耀寬(2018)。台灣電子類股價指數與總體經濟變數關聯性實證研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201801808
    魏文欽(1991)。我國賦稅收入季模型估測。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4f428b。
    衛生福利部(2021)。高齡社會白皮書(行政院臺衛字第1100185964號函修正核定本)。
    二、 英文部分
    Alhassan, B. G., & Tela, N. M. AN IMPROVEMENT FORECAST USING VECTOR AUTOREGRESSION APPROACH ON TAX REVENUE IN NIGERIA
    Baghestani, H., & McNown, R. (1992). Forecasting the federal budget with time‐series models. Journal of Forecasting, 11(2), 127-139.
    Botrić, V., & Vizek, M. (2012). Forecasting fiscal revenues in a transition country: the case of Croatia. Zagreb International Review of Economics & Business, 15(1), 23-36.
    Cameron, S. (2017). "A Review of Tax Revenue Forecasting Models for the Scottish Housing Market." Social Research series 1(1): 1-62.
    Comas‐Herrera, A., Wittenberg, R., Pickard, L., & Knapp, M. (2007). Cognitive impairment in older people: future demand for long‐term care services and the associated costs. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences, 22(10), 1037-1045.
    Cotti, C., Courtemanche, C., Maclean, J. C., Nesson, E., Pesko, M. F., & Tefft, N. W. (2022). The effects of e-cigarette taxes on e-cigarette prices and tobacco product sales: evidence from retail panel data. Journal of Health Economics, 86, 102676.
    de Meijer, C. A., Koopmanschap, M. A., Koolman, X. H., & van Doorslaer, E. K. (2009). The role of disability in explaining long-term care utilization. Medical Care, 47(11), 1156-1163.
    Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
    Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057–1072. https://doi.org/10.2307/1912517
    Dunlop, D. D., Hughes, S. L., & Manheim, L. M. (1997). Disability in activities of daily living: patterns of change and a hierarchy of disability. American journal of public health, 87(3), 378-383.
    Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
    Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.
    Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of economic dynamics and control, 12(2-3), 231-254.
    Johansen, S. R. (1994). The role of the constant and linear terms in cointegration analysis of nonstationary variables. Econometric reviews, 13(2), 205-229.
    Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with appucations to the demand for money. Oxford Bulletin of Economics and statistics, 52(2), 169-210.
    Karlsson, M., Mayhew, L., Plumb, R., & Rickayzen, B. (2006). Future costs for long-term care: cost projections for long-term care for older people in the United Kingdom. Health policy, 75(2), 187-213.
    Kasajima, M., Eggleston, K., Kusaka, S., Matsui, H., Tanaka, T., Son, B. K., ... & Hashimoto, H. (2022). Projecting prevalence of frailty and dementia and the economic cost of care in Japan from 2016 to 2043: a microsimulation modelling study. The Lancet Public Health, 7(5), e458-e468.
    Kim, N. (2015). Long‐term care services expenditure projection in South Korea from 2015 to 2050. The International Journal of Health Planning and Management, 30(1), 45-56.
    Krajňák, M. (2024). Cigarette taxation and consumption in The Czech Republic. Have these factors influenced tax revenue?. Financial Internet Quarterly, 20(3), 2024. 103-113. https://doi.org/10.2478/fiqf-2024-0022
    Kwon, H. S., Lee, C. S., & Hur, J. S. (2012). Projecting the cost of long-term care insurance in Korea. Asia-Pacific Journal of Risk and Insurance, 7(1).
    Maulia, E., & Sofyan, H. (2018, May). Tax revenue and inflation rate predictions in Banda Aceh using Vector Error Correction Model (VECM). In IOP Conference Series: Materials Science and Engineering (Vol. 352, No. 1, p. 012056). IOP Publishing.
    Musa, M. L., & Joseph, M. (2014). Macroeconomic effects of budget deficits in Uganda: A VAR-VECM Approach.
    Pickard, L., Comas-Herrera, A., Costa-Font, J., Gori, C., di Maio, A., Patxot, C., ... & Wittenberg, R. (2007). Modelling an entitlement to long-term care services for older people in Europe: projections for long-term care expenditure to 2050. Journal of European social policy, 17(1), 33-48.
    Sims, C. A. (1980). Macroeconomics and reality. Econometrica: journal of the Econometric Society, 1-48.
    Slobbe, L. C., Wong, A., Verheij, R. A., van Oers, H. A., & Polder, J. J. (2017). Determinants of first-time utilization of long-term care services in the Netherlands: an observational record linkage study. BMC Health Services Research, 17, 1-10.
    Steinbeisser, K., Grill, E., Holle, R., Peters, A., & Seidl, H. (2018). Determinants for utilization and transitions of long-term care in adults 65+ in Germany: results from the longitudinal KORA-Age study. BMC geriatrics, 18, 1-11.
    Sun, L., Ford, J. L., & Dickinson, D. G. (2010). Bank loans and the effects of monetary policy in China: VAR/VECM approach. China Economic Review, 21(1), 65-97.
    Tulcanaza Prieto, A. B., & Lee, Y. H. (2019). Determinants of stock market performance: VAR and VECM designs in Korea and Japan. Global Business & Finance Review (GBFR), 24(4), 24-44.
    Wittenberg, R., Comas-Herrera, A., King, D., Malley, J., Pickard, L., & Darton, R. (2006). Future demand for long-term care, 2002 to 2041: projections of demand for long-term care for older people in England.
    Xu, X., & Chen, L. (2019). Projection of long-term care costs in China, 2020–2050: based on the Bayesian quantile regression method. Sustainability, 11(13), 3530.
    Zhang, L., Fu, S., & Fang, Y. (2020). Prediction of the number of and care costs for disabled elderly from 2020 to 2050: a comparison between urban and rural areas in China. Sustainability, 12(7), 2598.
    Zhang, L., Zeng, Y., Wang, L., & Fang, Y. (2020). Urban–rural differences in long-term care service status and needs among home-based elderly people in China. International Journal of Environmental Research and Public Health, 17(5), 1701.
    Zou, X. (2018). VECM model analysis of carbon emissions, GDP, and international crude oil prices. Discrete Dynamics in Nature and Society, 2018(1), 5350308.
    描述: 碩士
    國立政治大學
    財政學系
    112255016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112255016
    資料類型: thesis
    顯示於類別:[財政學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    501601.pdf4459KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋