English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116849/147881 (79%)
Visitors : 64136510      Online Users : 123
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157650


    Title: 生成式 AI 提示能力研究 : 自我效能觀點
    Generative AI Prompting Ability: A Self-Efficacy Perspective
    Authors: 莊皓揚
    Chuang, Hao-Yang
    Contributors: 黃葳威
    莊皓揚
    Chuang, Hao-Yang
    Keywords: 生成式 AI
    提示工程
    自我效能
    ChatGPT
    大型語言模型
    Generative AI
    Prompt Engineering
    Self-Efficacy
    ChatGPT
    Large Language Model
    Date: 2025
    Issue Date: 2025-07-01 14:10:25 (UTC+8)
    Abstract: 在生成式AI(Generative AI)的飛速發展之下,社會各界關注其可能取代人類工作的風險。專家指出,具備有效使用生成式AI能力者,能提升職場競爭力、降低被淘汰之風險,學習使用生成式AI成為加強職場競爭力的重要技能,大型語言模型(Large Language Model)如ChatGPT也成為職場工作者的熱門生產力工具。「提示工程」(Prompt engineering)做為人類與生成式AI有效溝通之技術,本研究將從「提示工程」角度出發,關注職場工作者與生成式AI互動時的行為模式,探討提示能力如何影響其使用動機、自我效能認知,進而形塑生成式AI在工作中的使用選擇與持續效益。
    本研究以ChatGPT為例,以問卷調查法蒐集職場工作者使用ChatGPT的經驗與感受,共蒐集有效問卷209份,並以SPSS為工具進行統計分析。研究結果發現,工作中運用生成式AI的動機與效益,來自於AI能顯著提升工作效率與品質。提示能力越佳者,選擇繼續使用生成式AI的可能性亦會提高,並對工作的自我效能態度有正向影響。進一步發現,其自我效能提升將正向影響工作時的AI使用選擇,因為使用者感到自我效能提升時,將強化其選擇繼續使用AI解決工作任務的行為,形成良性循環。
    最後,本研究基於研究結果整理出關於理論與實務層面各三點討論,並補充研究限制與建議,供後續研究參考。
    As Generative AI rapidly advances, public concern has grown over its potential to replace human labor. Experts suggest that individuals equipped with the ability to effectively utilize Generative AI can enhance their workplace competitiveness and reduce their risk of being displaced. Accordingly, learning how to operate Generative AI has emerged as a crucial professional skill. Large Language Models (LLMs), such as ChatGPT, have also become widely adopted tools for workplace productivity.
    This study adopts the perspective of prompt engineering—a key technique for optimizing human-AI interaction—to explore how professionals engage with Generative AI in their work routines. Specifically, it examines how prompt ability influences users’ motivation, perceived self-efficacy, and ultimately their decision-making related to the continued use of AI tools in professional contexts.
    Using ChatGPT as the focal case, the research employs a questionnaire-based survey method, collecting 209 valid responses from working professionals. Data were analyzed using SPSS. The results indicate that motivation for using Generative AI at work is largely driven by its capacity to enhance efficiency and output quality. Individuals with stronger prompt skills are more likely to continue using Generative AI and report higher levels of self-efficacy in work-related tasks. Furthermore, improvements in self-efficacy are shown to positively impact users’ willingness to rely on AI for job execution, fostering a reinforcing cycle of use.
    Based on these findings, the study outlines three theoretical and three practical implications, and further offers limitations and suggestions for future research.
    Reference: 中文文獻
    王若樸(2024)。〈AI趨勢周報第243期:群創光電開源70億參數的繁中語言模型白龍〉,《iThome》。取自https://www.ithome.com.tw/news/161333。
    王若樸(2024)。〈臺灣繁中LLM另一里程碑!Project TAME以5,000億個Token訓練而成並開源釋出〉,《iThome》。取自https://www.ithome.com.tw/news/163730。
    文宣(2022)。《人工智慧如何自動辨識電腦生成新聞之研究》。國立臺灣師範大學圖書資訊學研究所碩士論文。
    林之晨(2023年11月14日)。〈「生成式AI元年」雷聲大雨點小?林之晨:像美國長大的人才〉,《天下雜誌》。取自https://www.cw.com.tw/article/5128078。
    林思平(2021)。〈人工智慧與人機傳播:傳播的擴充與弔詭〉,《資訊社會研究》,41,93-132。
    林芊(2023年1月30日)。〈AI 也懂人話?機器學習在 NLP 的基礎概念〉,《知勢》。取自https://edge.aif.tw/aicafe-report-0525nlp/。
    余至浩(2023)。〈剖析中研院大型語言模型事件的衝擊:為何臺灣必須擁有本土化的LLM〉,《iThome》。取自https://www.ithome.com.tw/news/159231。
    吳凱中(2025)。〈華碩新旗艦機首度導入「福爾摩沙AI大模型」 銷量看增三成〉,《經濟日報》。取自 https://money.udn.com/money/story/5612/8531589。
    李怡志(2023)。〈生成式人工智慧的傳播產業實務影響與應用〉,《臺灣傳播學刊》,44,103-113。
    李佳樺(2024年2月19日)。〈「生成式AI」如同雙面刃,高等教育怎麼應對?6大原則核心:以人為本〉,《Cheers》。取自https://www.cheers.com.tw/article/article.action?id=5102906。
    阮孝齊、江儀梅、林惠茹(2024)。〈運用 ChatGPT 融入原住民族教師教案設計共創工作坊之探究與省思〉。《臺灣教育評論月刊》,13(5),17-26。
    周昆璋、廖執善、蔣旭政(2021)。〈人工智慧科技在臺灣新聞傳播領域之運用與發展〉。《臺灣東亞文明研究學刊》18-1,43-88。
    陳品潔(2024年1月31日)。〈尼曼新聞實驗室2024年新聞業預測|人工智慧篇,下篇|AI人機協作成趨勢 人類優勢無可取代〉,《卓越新聞電子報》。取自https://feja.org.tw/74583。
    陳建鈞(2022年12月23日)。〈ChatGPT崛起,Google發布紅色警戒!一款聊天機器人,怎麼嚇到搜尋龍頭?〉,《數位時代》。取自https://www.bnext.com.tw/article/73379/google-chatgpt-code-red。
    張雄風(2024年4月18日)。〈AI助攻 客新聞自動生成客語語音播報〉,《中央社》。取自https://www.cna.com.tw/news/ahel/202404180145.aspx 。
    張芬芬(2023)。〈老師如何善用 AI 工具:認識 ChatGPT〉,《臺灣教育評論月刊》,12(10),頁 69-80。
    黃葳威(2023)。《2023台灣青少兒美感素養與上網趨勢報告》。政大數位傳播文化行動實驗室與白絲帶關懷協會。
    黃啟菱(2024)。〈做獨一無二的自己!台大資工系副教授陳縕儂:這3大能力,AI時代必備,愈早開始培養愈好〉,《未來親子學習平台》。取自https://futureparenting.cwgv.com.tw/family/content/index/31322。
    曾子軒(2024年2月7日)。〈AI確實左右科技業裁員潮!矽谷台灣人揭職缺回不去真相〉,《遠見雜誌》。取自https://www.gvm.com.tw/article/110011。
    曾子軒(2024年7月1日)。〈AI Agent來了,但它是什麼?AI代理介紹、趨勢全解讀〉,《遠見雜誌》。取自https://www.gvm.com.tw/article/113965。
    楊又肇(2024)。〈聯發科推出名為「BreeXe」的大型語言模型、自動生成式人工智慧服務平台「MediaTek DaVinci」〉,《mashdigi》。取自https://mashdigi.com/mediatek-launches-a-large-scale-language-model-called-breexe-and-an-automatically-generated-artificial-intelligence-service-platform-mediatek-davinci/。
    葉盈君(2012)。〈淺談計畫行為理論〉,《國家教育研究院電子報》,第51期。,取自https://epaper.naer.edu.tw/edm?edm_no=51&content_no=1421
    許伯崧(2023)。〈「我國領導人是習近平」,中研院AI大模型惹議凸顯繁中語料短板〉,《端傳媒》。取自https://theinitium.com/article/20231017-whatsnew-taiwan-llm。
    蔡昱宏(2023年6月30日)。〈生成式AI的崛起:必須了解的定義及運作方式〉,《財團法人台灣網路資訊中心》。取自https://blog.twnic.tw/2023/06/30/27117/。
    蔡尚勳(2024)。〈全球首創多產業共同開發 開源AI語言模型「Project TAME」〉,《經濟日報》。取自 https://money.udn.com/money/story/5635/8080641。
    顏士淨(2016)。〈打開 AlphaGo !〉。《數理人文》10,38-46。
    諶家蘭(2020)。〈談人工智慧與金融科技〉。《會計研究月刊》,415,99-105。
    羅思涵(2024年5月17日)。〈「有了 ai,我們還需要記者嗎?」當人工智慧成顯學,臺大新聞所如何因應?〉,《換日線》。取自https://crossing.cw.com.tw/article/18902。
    羅昀玫(2023年3月2日)。〈馬斯克:AI讓我備感壓力〉,《鉅亨網》。取自https://news.cnyes.com/news/id/5100865。
    盧俊宏(1999)。運動心理學。臺北市:師大書苑。
    鍾詠翔(2023)。〈傳輝達正洽談中國版 AI 晶片供應 微軟、OpenAI 相繼訪中〉,《鉅亨網新聞》。取自https://news.cnyes.com/news/id/5141889
    蒲清平、向往。(2023)。〈生成式人工智能——ChatGPT的變革影響、風險挑戰及應對策略〉。《重慶大學學報(社會科學版) 》,29(3),102-114。
    廖珮君(2023)。〈為什麼臺灣一定要發展大型語言模型?專訪「生成式 AI 對話引擎 TAIDE 」核心模型訓練與 RLHF 小組召集人蔡宗翰教授〉,《科技大觀園》。取自https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=9f256eca-4480-44dc-a25b-94f73bf4e0cc。
    隋昱嬋(2023)。 〈跟GPT-3.5一樣強、中文更好!最懂台灣的AI大模型「福爾摩沙」登場,厲害在哪?〉,《數位時代》。取自 https://www.bnext.com.tw/article/75296/asus-tws-ai-model-formosa。
    Ariel Chang(2024)。〈生成式 AI 湧入影像賽道!OpenAI、Google 陸續投入,它們各自強在哪?〉,《未來商務》。取自https://fc.bnext.com.tw/articles/view/3340。
    Appier(2021)。〈媒體業如何用AI人工智慧,實現流量變現?天下雜誌群的經驗談〉,《未來城市》。取自https://futurecity.cw.com.tw/article/2165。
    民視(2023年7月26日)。〈民視AI主播換新裝再上線 「敏熙」全年無休新工作曝光!〉,《民視新聞網》。取自https://www.ftvnews.com.tw/news/detail/2023726W0047。
    台視(2024年5月29日)。〈主播、記者都非真人! 美國AI新聞頻道殺出血路〉,《台視新聞網》。取自https://news.ttv.com.tw/news/11305290002600W。
    華視(2024年5月15日)。〈AI好用勝真人?科技業裁員+凍結工程師職缺〉,《華視》。取自https://news.cts.com.tw/cts/money/202405/202405152324011.htmlhttps://news.cts.com.tw/cts/money/202405/202405152324011.html。
    愛范兒2024年7月24日,〈被 AlphaGo 击败的李世石,用 8 年重建崩塌的世界〉,《愛范兒》。取自https://www.ifanr.com/1592736。
    數位時代(2020)。〈AI將成廣告界創意總監?自動生成的文案,點擊率卻提升68%,怎麼做到的?〉,《數位時代》。取自https://www.bnext.com.tw/article/58877/marketing-artificial-intelligence。
    烽燧視覺(2023)。〈AIGC (AI 生成技術) 在影視製作上的運用及未來〉,《方格子》。取自https://vocus.cc/article/64dc4b36fd897800014c9c3a。
    微軟、領英(2024)。〈2024 年工作趨勢指數〉,《微軟》。取自https://info.microsoft.com/GC-COPM365-CNTNT-FY25-08Aug-14-Microsofts-2024-Work-Trends-Index-Report-SRGCM12764_LP01-Registration---Form-in-Body.html?ocid=AID3063747_LINKEDIN_oo_spl100006148516580。
    騰訊(2023),〈騰訊自研混元大模型正式亮相〉,《騰訊》。取自https://www.tencent.com/zh-hk/articles/2201685.html。

    英文文獻
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
    Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control: From cognition to behavior (pp. 11–39). Springer.
    Al-Khaldi, M. A., & Al-Jabri, I. M. (1998). The relationship of attitudes to computer utilization: New evidence from a developing nation. Computers in Human Behavior, 14(1), 23–42.
    Anderson, J. F., Kras, K. (2007). Revisiting Albert Bandura’s Social Learning Theory to Better Understand and Assist Victims of Intimate Personal Violence. Women & Criminal Justice, 17(1), pp.99–124.
    Aktağ, I. (2015). Computer self-efficacy, computer anxiety, performance and personal outcomes of Turkish physical education teachers. Educational Research and Reviews, 10(3), 328–337.
    Alharbi, S., & Drew, S. (2019). The role of self-efficacy in technology acceptance. In K. Arai, R. Bhatia, & S. Kapoor (Eds.), Proceedings of the Future Technologies Conference (FTC) 2018 (Vol. 880, pp. 1142–1150). Springer.
    Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending the Technology Acceptance Model (TAM) to predict university students’ intentions to use metaverse-based learning platforms. Education and Information Technologies, 28, 15381–15413.
    Assad, A. (2024). Exploring the use of ChatGPT among media students in Egypt: Opportunities and challenges. Online Journal of Communication and Media Technologies, 14(2), e202424.
    Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665–694.
    Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88(1), 87–99.
    Bandura, A. (1988). Organizational Application of Social Cognitive Theory. Australian Journal of Management, 13(2), 275-302.
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.
    Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman.
    Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares & T. Urdan (Eds.), Adolescence and education: Self-efficacy and adolescence (Vol. 5, pp. 307–337). Information Age.
    Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
    Baştan, A., & Dülek, A. (2023). Learned violence: Bandura’s social learning theory in Edward Bond's The Children. Nevşehir Hacı Bektaş Veli Üniversitesi S..., 13(1), 106-118.
    Copyright Review Board. (2023, September 5). Second request for reconsideration for refusal to register Théâtre D’opéra Spatial (SR #1-11743923581; Correspondence ID: 1-5T5320R). United States Copyright Office.
    Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2024). Unleashing the potential of prompt engineering in Large Language Models: A comprehensive review. Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College; Research Center for Mathematics, Beijing Normal University.
    Cheng, Y., Dou, L., & Zhou, L. (2024). Exploring the influence of academic self-efficacy on students' professional identity: The intermediary role of social media frequency. Proceedings of the 5th International Conference on Education Innovation and Philosophical Inquiries, 133-140.
    Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.
    Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
    Daugherty, M. and Funke, B. (1998) University Faculty and Student Perceptions of Web-Based Instruction. Journal of Distance Education, 13, 21-39.
    Eisenführ, F., Weber, M., & Langer, T. (2022). Decision making: A theoretical review. Integrative Psychological and Behavioral Science, 56(3), 609–629.
    Ekin, S. (2023). Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices [Preprint]. TechRxiv.
    Fisher, M., Goddu, M. K., & Keil, F. C. (2015). Searching for explanations: How the Internet inflates estimates of internal knowledge. Journal of Experimental Psychology: General, 144(3), 674–687.
    Frankish, K., & Ramsey, W. M. (Eds.). (2014). The Cambridge handbook of artificial intelligence. Cambridge, UK: Cambridge University Press.
    Franklin, S. (2014). History, motivations, and core themes. In K. Frankish & W. M. Ramsey(Eds.), The Cambridge handbook of artificial intelligence (pp. 15-33). Cambridge, UK: Cambridge University Press.
    Gates, B. (2023, June 27). AI agents are about to become a big deal. What are they?. Gates Notes. from: https://www.gatesnotes.com/AI-agents
    Guzman, A. L. (2016). The messages of mute machines: Human-Machine Communication with industrial technologies. Communication 1, 5(1).
    Guzman, A. L. (2018). What is human-machine communication, anyway. In A. L.Guzman (Ed.), Human-machine communication: Rethinking communication, technology and ourselves (pp. 1-28). New York, NY: Peter Lane Publishing.
    Guzman, A. L. (2019). Beyond extraordinary: Theorizing artificial intelligence and the self in daily life. In Z. Papacharissi. (Ed.), A networked self and human augmentics, artificial intelligence, sentience (pp. 83-96). New York, NY: Routledge.
    Guzman, A. L. & Lewis, S. C. (2019). Artificial intelligence and communication: A humanmachine communication research agenda. New Media & Society, 22(1), 70-86.
    Heston, T. F., & Khun, C. (2023). Prompt engineering in medical education. International Medical Education, 2(3), 198-205.
    Hopp, T., Duric, N., & Ruiter, N. V. (2015). Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration. Computerized Medical Imaging and Graphics, 40, 170-181.
    Herbert, M. & Benbasat, I. (1994). Adopting information technology in hospitals: The relationship between attitudes/expectations and behavior. Hospital and Health Services Administration, 39(3), 369-383.
    Hansen, J., & Wänke, M. (2010). Truth from language and truth from fit: The impact of linguistic concreteness and level of construal on subjective truth. Personality and Social Psychology Bulletin, 36(11), 1576-1588.
    Hong, J.-W. (2022). I was born to love AI: The influence of social status on AI self-efficacy and intentions to use AI. International Journal of Communication, 16, 172–191.
    Igbaria, M., & Iivari, J. (1995). The efects of self-efcacy on computer usage. Omega, 23(6),587–605
    Ismail, N. H., Ayub, A. F. M., & Luan, W. S. (2016). The relationship between Internet access frequency, attitudes towards the Internet and Internet self-efficacy and behaviour intention in using the Internet among secondary school students. International Journal of Education and Training (InjET), 2(1), 1-9.
    Johnson, A. M., Ozogul, G., & Reisslein, M. (2015). Supporting multimedia learning with visual signalling and animated pedagogical agent: Moderating effects of prior knowledge. Journal of Computer Assisted Learning, 31(2), 97-115.
    John, S. P. (2013). Antecedents and effects of computer self-efficacy on social networking adoption among Asian online users. In Proceedings of the Nineteenth Americas Conference on Information Systems (AMCIS 2013), Chicago, IL.
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.
    Korzynski, P., Mazurek, G., Krzypkowska, P., & Kurasinski, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25-37.
    Kenney, A. (2023, September 6). Jason Allen’s AI art won the Colorado fair — but now the feds say it can’t get a copyright. Colorado Public Radio. from: https://www.cpr.org/2023/09/06/jason-allens-ai-art-won-colorado-fair-feds-deny-copyright-protection/
    Losee, R. M. Natural language processing in support of decision-making: phrases and part-of-speech tagging. Information Processing & Management, 37(6), 2001, pp.769-787.
    Liaw, S. S. (2002). An internet survey for perceptions of computer and world wide web: Relationship, prediction, and difference. Computers in Human Behavior, 18, 17-35.
    Lewis, D. (2024, March 13). U.S. AI innovation surpasses China: Stanford University. Newsweek. from:https://www.newsweek.com/us-ai-innovation-surpasses-china-stanford-university-1989781
    McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence. Unpublished manuscript.
    Metz, C. (2022). Genius makers: The mavericks who brought AI to Google, Facebook, and the world. Dutton.
    Meskó, B. (2023). Prompt engineering as an important emerging skill for medical professionals: tutorial. Journal of Medical Internet Research, 25, e50638.
    McMorrow, R., & Hu, T. (2024, July 17). China deploys censors to create socialist AI. Financial Times. from:https://www.ft.com/content/10975044-f194-4513-857b-e17491d2a9e9
    Marvin, G., Hellen, N., Jjingo, D., & Nakatumba-Nabende, J. (2024). Prompt engineering in large language models. In I. J. Jacob et al. (Eds.), Data intelligence and cognitive informatics: Algorithms for intelligent systems (pp. 387–401). Springer Nature Singapore Pte Ltd.
    Manik, S., Sembiring, M., Padang, I., & Manurung, L. (2022). Theory of Bandura's social learning in the process of teaching at SMA Methodist Berastagi Kabupaten Karo. PKM: Pengabdian Kepada Masyarakat, 3(2), 85-96.
    Marakas, M. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an intergrative framework of research. Information Systems Research, 9(2), 126-163.
    Murphy, C. A., Coover, D., & Owen, S.V. (1989). Development and validation of the computer self-efficacy scale. Educational and Psychological Measurement, 49, -.
    Ma, J., Wang, P., Li, B., Wang, T., Pang, X. S., & Wang, D. (2024). Exploring user adoption of ChatGPT: A Technology Acceptance Model perspective. International Journal of Human–Computer Interaction.
    Mumuni, F., & Mumuni, A. (2025, January 17). Explainable artificial intelligence (XAI): From inherent explainability to large language models [Preprint]. arXiv.
    Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill.
    Oppenlaender, J., Linder, R., & Silvennoinen, J. (2023). Prompting AI Art: An Investigation into the Creative Skill of Prompt Engineering. University of Jyväskylä, Finland.
    Piet, J., Alrashed, M., Sitawarin, C., Chen, S., Wei, Z., Sun, E., Alomair, B., & Wagner, D. (2023). Jatmo: Prompt injection defense by task-specific finetuning [Preprint]. arXiv.
    Proctor, K. S. (2011). Optimizing and assessing information technology: Improving business project execution. John Wiley & Sons.
    Pütten, A. R.-V. D., & Bock, N. (2018). Development and validation of the self-efficacy in human-robot-interaction scale (SE-HRI). ACM Transactions on Human-Robot Interaction, 7(3), 21.
    Qureshi, I. A., Arshad, K. S., & Whitty, M. (2016). Relationship of computer usage and work self-efficacy of employees in the organizations. European Journal of Business and Management, 8(4), 1-7.
    Rathod, J. D., & Kale, G. V. (2024). Systematic study of prompt engineering. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12(6).
    Reed, A. E., Mikels, J. A., & Löckenhoff, C. E. (2012). Choosing with confidence: Self-efficacy and preferences for choice. Judgment and Decision Making, 7(2), 173-180.
    Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Prentice Hall.
    Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, 15.D. (2017). "Mastering the game of Go without human knowledge." Nature, 550(7676), 354-359.
    Sargent, P. (1992). Data quality in materials information systems. Computer - Aided Design, 24(9), 477-490.
    Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53-78.
    Song, M., Feng, Y., & Jing, L. (2023). A preliminary empirical study on prompt-based unsupervised keyphrase extraction. arXiv.
    Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary Educational Psychology, 60, 101832.
    Savioni, L., Triberti, S., Durosini, I., & Pravettoni, G. (2023). How to make big decisions: A cross-sectional study on the decision making process in life choices. Current Psychology, 42, 15223–15236.
    Stanford University. (2024). AI Index Report 2023. Stanford Institute for Human-Centered AI.
    Soni, A., & Kachwala, Z. (2025). DeepSeek's low-cost AI spotlights billions spent by US tech. Reuters. from: https://www.reuters.com/technology/artificial-intelligence/big-tech-faces-heat-chinas-DeepSeek-sows-doubts-billion-dollar-spending-2025-01-27/
    Sophi (2023). Case study: The globe and mail and Sophi automation.Retrieved from: https://www.sophi.io/insights/casestudies/case-study-the-globe-and-mail-and-sophi-automation/
    Teo, T. S. H., Lim, V. K. G., & Lai, R. Y. C. (1999). Intrinsic and extrinsic motivation in Internet usage. Omega, 27(1), 25-37.
    Tegmark, M. (2018). Life 3.0: Being human in the age of artificial intelligence. New York, NY: Vintage.
    Tsai, M.-J., & Tsai, C.-C. (2003). Information searching strategies in web-based science learning: The role of Internet self-efficacy. Innovations in Education and Teaching International, 40, 43–50.
    Teo, T., & Koh, J. H. L. (2010). Assessing the dimensionality of computer self-efficacy among pre-service teachers in Singapore: A structural equation modeling approach. International Journal of Education and Development using Information and Communication Technology, 6(3), 7–18.
    Thangarasu, S., & De Paul, S. V. (2014). Development and validation of teacher computer self efficacy scale. Journal of Humanities and Social Science, 19(1), 33–39.
    Urban, M., Děchtěrenko, F., Lukavský, J., Hrabalová, V., Svacha, F., Brom, C., & Urban, K. (2024). ChatGPT improves creative problem-solving performance in university students: An experimental study. Computers & Education, 105031.
    Vallance, C. (2022, December 7). ChatGPT: New AI chatbot has everyone talking to it. From: https://www.bbc.com/news/technology-63861322
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
    Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., & Zhou, D. (2022, October 31). Chain-of-thought prompting elicits reasoning in large language models. arXiv.
    Ward, A. F. (2021). People mistake the internet’s knowledge for their own. Proceedings of the National Academy of Sciences, 118(43), e2105061118.
    Woo, D. J., Wang, D., Yung, T., & Guo, K. (2024). Effects of a prompt engineering intervention on undergraduate students' AI self-efficacy, AI knowledge, and prompt engineering ability: A mixed methods study. ResearchGate.
    Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: what data quality means. Journal of Management Information systems, 12(4) 5-34.
    Wang, Y.-Y., & Chuang, Y.-W. (2023). Artificial intelligence self-efficacy: Scale development and validation. Education and Information Technologies, 29, 4785–4808.
    Wong, J. (2023). Baidu’s ChatGPT-style bot will be no magic bullet: Whether the Chinese company’s Ernie Bot can recharge stagnant advertising revenue is an open question. The Wall Street Journal. From:https://www.wsj.com/articles/baidus-chatgpt-style-chatbot-will-be-no-magic-bullet-d26706e8
    Williams, K. (2025, February 2). Chinese AI app DeepSeek was downloaded by millions. Deleting it might come next. CNBC. From:https://www.cnbc.com/2025/02/02/why-deleting-chinas-DeepSeek-ai-may-be-next-for-millions-of-americans.html
    Yang, Y., & Hu, R. (2022). The functions of context in discourse analysis. International Journal of Linguistics, Literature and Culture, 8(5), 218-228.
    Yang, S., & Pu, R. (2022). The effects of contextual factors, self-efficacy and motivation on learners’adaptability to blended learning in college English: A structural equation modeling approach. Frontiers in Psychology, 13, 847342.
    Yap, Z. H. (2024). Exploring contributing factors and their inter-relationships towards the effective usage of ChatGPT in academic learning among UTAR Kampar undergraduates [Bachelor's thesis, Universiti Tunku Abdul Rahman]. UTAR Institutional Repository.
    Ye, J. (2023, October 20). U.S. chip curbs give Huawei a chance to fill Nvidia void in China. Reuters. from: https://www.reuters.com/technology/us-chip-curbs-give-huawei-chance-fill-nvidia-void-china-2023-10-20/
    Zsolnai, L. (2016). Moral disengagement: How people do harm and live with themselves, by Albert Bandura. Business Ethics Quarterly, 26(3), 426–429.
    Description: 碩士
    國立政治大學
    傳播學院傳播碩士學位學程
    108464036
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108464036
    Data Type: thesis
    Appears in Collections:[傳播學院傳播碩士學位學程] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML5View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback