English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116001/147038 (79%)
Visitors : 57966027      Online Users : 81
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157198


    Title: 氣候相關財務揭露報告書的文字分析
    A Study of Text Analysis on the Reports of Climate-related Financial Disclosures
    Authors: 徐韶汶
    Hsu, Shao-Wen
    Contributors: 余清祥
    Yue, Ching-Syang
    徐韶汶
    Hsu, Shao-Wen
    Keywords: 氣候相關財務揭露
    文字探勘
    寫作風格
    探索性資料分析
    機器學習模型
    Date: 2024
    Issue Date: 2025-06-02 14:29:22 (UTC+8)
    Abstract: 我國行政院金融監督管理委員會宣布2023年起,銀行業及保險業應依規模及業務性質建立適切之氣候相關風險與機會之評估及揭露機制,促使相關業者在TCFD或稱永續報告書中提供氣候財務資訊,以因應極端氣候帶來的災害。本文研究各公司永續報告書的寫作風格,以38家銀行、21家壽險及 23家產險業者的報告書為研究對象,分析四大要素的寫作風格,檢視報告書是否依照框架(治理、策略、風險管理、指標與目標)揭露氣候財務資訊,同時也設計迴歸評分模型輔助專家進行評鑑。
    我們先藉由探索性資料分析挑選與專家評分有關的變數,以提高迴歸模型的估計準確性,可能變數則包括公司、報告書的相關資訊。分析結果顯示三種業者的迴歸模型R2解釋力至少達到0.73,其中文字變數佔比超過一半,顯示文字資訊在報告評估的重要性。另外,本文也以500次交叉驗證評估迴歸模型的效果,分析發現顯著的解釋變數更為關鍵,使用較少變數的迴歸模型之估計結果優於隨機森林、XGBoost、支持向量機等機器學習模型。寫作風格分析則發現永續報告書的寫作風格較為單調,或許受限於金管會的規格及篇幅的要求,使得詞彙缺乏多樣性;即便如此,四要素的用字遣詞仍有相當大的差異,以常見詞彙就能清楚區隔報告書中的四個要素。
    Reference: 一、中文文獻
    [1] 小金斧(2022)。「八大公股?民營?外商?一次帶你了解台灣的銀行競爭地圖」。小金斧。https://goldenaxes.net/bank_cat_asset/。
    [2] 何立行、余清祥、鄭文惠(2014)。「從文言到白話:《新青年》雜誌語言變化統計研究」。《東亞觀念史集刊》,第 7 期,頁427–454。
    [3] 余清祥、葉昱廷(2020)。「以文字探勘技術分析臺灣四大報文字風格」。數位典藏與數位人文,6,頁67–94。
    [4] 吳蒨芸(2022)。「從文字探勘比較臺灣與中國之寫作風格—以《聯合報》、《人民日報》為例」。國立政治大學統計學系學位論文。
    [5] 周桂田、郭雅婷、趙怡萌(2023)。「TCFD 調查報告—高碳排產業面對淨零轉型的挑戰」。2023 富邦永續大未來論壇。
    [6] 劉貞莉(2024)。「臺灣碩博士論文之文字分析—以商業及管理學門摘要為例」。國立政治大學統計學系學位論文。

    二、英文文獻
    [1] Task Force on Climate-related Financial Disclosures. (2023). 2023 Status Report. https://www.fsb-tcfd.org/publications/.
    [2] Amar, J., Demaria, S., & Rigot, S. (2020). Enhancing financial transparency to mitigate climate change: Towards a climate risks and opportunities reporting index. GREDEG Working Paper, No. 2020–52.
    [3] Ding, D., Liu, B., & Chang, M. (2022). Carbon emissions and TCFD aligned climate-related information disclosures. Journal of Business Ethics, 182(4), 967–1001.
    [4] Auzepy, A., Lenz, D., Tonjes, E., & Funk, C. (2023). Evaluating TCFD reporting: A new application of zero-shot analysis to climate-related financial disclosures. PLoS ONE, 18(11): e0288052. https://doi.org/10.1371/journal.pone.0288052.
    [5] Krueger, P., Sautner, Z., & Starks, L. T. (2020). The importance of climate risks for institutional investors. The Review of Financial Studies, 33(3), 1067–1111.
    [6] Webersinke, N., Kraus, M., Bingler, J. A., & Leippold, M. (2021). ClimateBert: A pretrained language model for climate-related text. CoRR, abs/2110.12010.
    [7] Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate change sentiment on Twitter: An unsolicited public opinion poll. PLOS ONE, 10(8), e0136092.
    [8] Sautner, Z., van Lent, L., Vilkov, G., & Zhang, R. (2022). Firm-level climate change exposure. Journal of Finance, 78(3), 1449–1498.
    [9] Varini, F. S., Boyd-Graber, J., Ciaramita, M., & Leippold, M. (2020). ClimaText: A dataset for climate change topic detection. In Tackling Climate Change with Machine Learning (Climate Change AI) Workshop at NeurIPS.
    [10] Luccioni, A., Baylor, E., & Duchene, N. (2020). Analyzing sustainability reports using natural language processing. arXiv preprint, arXiv:2011.08073.
    [11] Diggelmann, T., Boyd-Graber, J., Bulian, J., Ciaramita, M., & Leippold, M. (2020). Climate-fever: A dataset for verification of real-world climate claims. arXiv preprint, arXiv:2012.00614v2. https://doi.org/10.48550/arXiv.2012.00614.
    [12] Morio, G., & Manning, C. D. (2023). An NLP benchmark dataset for assessing corporate climate policy engagement. NeurIPS 2023 Datasets and Benchmarks Track. https://proceedings.neurips.cc/paper_files/paper/2023/file/7ccaa4f9a89cce6619093226f26b84e6-Paper-Datasets_and_Benchmarks.pdf
    [13] Rowlands, H., Morio, G., Tanner, D., & Manning, C. D. (2024). Predicting narratives of climate obstruction in social media advertising. Findings of ACL 2024, 5547–5558.
    [14] Morio, G., In, S. Y., Yoon, J., Rowlands, H., & Manning, C. D. (2024). ReportParse: A unified NLP tool for extracting document structure and semantics of corporate sustainability reporting. IJCAI-24 Demonstrations Track.
    [15] Coen, D., Herman, K., & Pegram, T. (2022). Are corporate climate efforts genuine? An empirical analysis of the climate ‘talk–walk’ hypothesis. Business Strategy and the Environment. DOI: 10.1002/bse.3063.
    [16] Ding, D., Liu, B., & Chang, M. (2023). Carbon emissions and TCFD aligned climate-related information disclosures. Journal of Business Ethics, 182, 967–1001. https://doi.org/10.1007/s10551-022-05292-x.
    [17] Di Marco, R., Dong, T., Malatincová, R., Reuter, M., & Strömsten, T. (2022). Symbol or substance? Scrutinizing the ‘risk transparency premise’ in marketized sustainable finance: The case of TCFD reporting. Business Strategy and the Environment. DOI: 10.1002/bse.3285.
    [18] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
    [19] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688.
    [20] Templin, M. C. (1957). Certain language skills in children; their development and interrelationships. University of Minnesota Press. https://www.jstor.org/stable/10.5749/j.ctttv2st.
    [21] Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard's index of similarity. Systematic Biology, 45(3), 380–385.
    [22] Yue, J. C., & Clayton, M. K. (2005). A similarity measure based on species proportions. Communications in Statistics - Theory and Methods, 34(11), 2123–2131.
    [23] Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin, 24(4), 35–43.
    [24] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint, arXiv:1301.3781.
    [25] Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Journal of the Royal Statistical Society: Series B (Methodological), 38(2), 139–147.
    [26] Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675.
    [27] Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, 4, 83–91.
    [28] Smirnov, N. V. (1948). Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics, 19(2), 279–281.
    [29] Goldfeld, S. M., & Quandt, R. E. (1965). Some tests for homoscedasticity. Journal of the American Statistical Association, 60(310), 539–547.
    [30] Utts, J. M., & Heckard, R. F. (2010). Mind on statistics (4th ed.). Cengage Learning.
    [31] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
    [32] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    [33] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In KDD '16, 785–794.
    [34] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    111358012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111358012
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File SizeFormat
    801201.pdf4869KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback