Reference: | 一、中文文獻 [1] 小金斧(2022)。「八大公股?民營?外商?一次帶你了解台灣的銀行競爭地圖」。小金斧。https://goldenaxes.net/bank_cat_asset/。 [2] 何立行、余清祥、鄭文惠(2014)。「從文言到白話:《新青年》雜誌語言變化統計研究」。《東亞觀念史集刊》,第 7 期,頁427–454。 [3] 余清祥、葉昱廷(2020)。「以文字探勘技術分析臺灣四大報文字風格」。數位典藏與數位人文,6,頁67–94。 [4] 吳蒨芸(2022)。「從文字探勘比較臺灣與中國之寫作風格—以《聯合報》、《人民日報》為例」。國立政治大學統計學系學位論文。 [5] 周桂田、郭雅婷、趙怡萌(2023)。「TCFD 調查報告—高碳排產業面對淨零轉型的挑戰」。2023 富邦永續大未來論壇。 [6] 劉貞莉(2024)。「臺灣碩博士論文之文字分析—以商業及管理學門摘要為例」。國立政治大學統計學系學位論文。
二、英文文獻 [1] Task Force on Climate-related Financial Disclosures. (2023). 2023 Status Report. https://www.fsb-tcfd.org/publications/. [2] Amar, J., Demaria, S., & Rigot, S. (2020). Enhancing financial transparency to mitigate climate change: Towards a climate risks and opportunities reporting index. GREDEG Working Paper, No. 2020–52. [3] Ding, D., Liu, B., & Chang, M. (2022). Carbon emissions and TCFD aligned climate-related information disclosures. Journal of Business Ethics, 182(4), 967–1001. [4] Auzepy, A., Lenz, D., Tonjes, E., & Funk, C. (2023). Evaluating TCFD reporting: A new application of zero-shot analysis to climate-related financial disclosures. PLoS ONE, 18(11): e0288052. https://doi.org/10.1371/journal.pone.0288052. [5] Krueger, P., Sautner, Z., & Starks, L. T. (2020). The importance of climate risks for institutional investors. The Review of Financial Studies, 33(3), 1067–1111. [6] Webersinke, N., Kraus, M., Bingler, J. A., & Leippold, M. (2021). ClimateBert: A pretrained language model for climate-related text. CoRR, abs/2110.12010. [7] Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate change sentiment on Twitter: An unsolicited public opinion poll. PLOS ONE, 10(8), e0136092. [8] Sautner, Z., van Lent, L., Vilkov, G., & Zhang, R. (2022). Firm-level climate change exposure. Journal of Finance, 78(3), 1449–1498. [9] Varini, F. S., Boyd-Graber, J., Ciaramita, M., & Leippold, M. (2020). ClimaText: A dataset for climate change topic detection. In Tackling Climate Change with Machine Learning (Climate Change AI) Workshop at NeurIPS. [10] Luccioni, A., Baylor, E., & Duchene, N. (2020). Analyzing sustainability reports using natural language processing. arXiv preprint, arXiv:2011.08073. [11] Diggelmann, T., Boyd-Graber, J., Bulian, J., Ciaramita, M., & Leippold, M. (2020). Climate-fever: A dataset for verification of real-world climate claims. arXiv preprint, arXiv:2012.00614v2. https://doi.org/10.48550/arXiv.2012.00614. [12] Morio, G., & Manning, C. D. (2023). An NLP benchmark dataset for assessing corporate climate policy engagement. NeurIPS 2023 Datasets and Benchmarks Track. https://proceedings.neurips.cc/paper_files/paper/2023/file/7ccaa4f9a89cce6619093226f26b84e6-Paper-Datasets_and_Benchmarks.pdf [13] Rowlands, H., Morio, G., Tanner, D., & Manning, C. D. (2024). Predicting narratives of climate obstruction in social media advertising. Findings of ACL 2024, 5547–5558. [14] Morio, G., In, S. Y., Yoon, J., Rowlands, H., & Manning, C. D. (2024). ReportParse: A unified NLP tool for extracting document structure and semantics of corporate sustainability reporting. IJCAI-24 Demonstrations Track. [15] Coen, D., Herman, K., & Pegram, T. (2022). Are corporate climate efforts genuine? An empirical analysis of the climate ‘talk–walk’ hypothesis. Business Strategy and the Environment. DOI: 10.1002/bse.3063. [16] Ding, D., Liu, B., & Chang, M. (2023). Carbon emissions and TCFD aligned climate-related information disclosures. Journal of Business Ethics, 182, 967–1001. https://doi.org/10.1007/s10551-022-05292-x. [17] Di Marco, R., Dong, T., Malatincová, R., Reuter, M., & Strömsten, T. (2022). Symbol or substance? Scrutinizing the ‘risk transparency premise’ in marketized sustainable finance: The case of TCFD reporting. Business Strategy and the Environment. DOI: 10.1002/bse.3285. [18] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. [19] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688. [20] Templin, M. C. (1957). Certain language skills in children; their development and interrelationships. University of Minnesota Press. https://www.jstor.org/stable/10.5749/j.ctttv2st. [21] Real, R., & Vargas, J. M. (1996). The probabilistic basis of Jaccard's index of similarity. Systematic Biology, 45(3), 380–385. [22] Yue, J. C., & Clayton, M. K. (2005). A similarity measure based on species proportions. Communications in Statistics - Theory and Methods, 34(11), 2123–2131. [23] Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin, 24(4), 35–43. [24] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint, arXiv:1301.3781. [25] Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Journal of the Royal Statistical Society: Series B (Methodological), 38(2), 139–147. [26] Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675. [27] Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, 4, 83–91. [28] Smirnov, N. V. (1948). Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics, 19(2), 279–281. [29] Goldfeld, S. M., & Quandt, R. E. (1965). Some tests for homoscedasticity. Journal of the American Statistical Association, 60(310), 539–547. [30] Utts, J. M., & Heckard, R. F. (2010). Mind on statistics (4th ed.). Cengage Learning. [31] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. [32] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. [33] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In KDD '16, 785–794. [34] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. |