Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/156808
|
Title: | 基於大型語言模型的法律案由分類框架:融合法益分析與競合推理的方法 A Legal Cause-Oriented Classification Framework Based on Large Language Models: An Integrated Approach of Legal Interest Analysis and Concurrence Reasoning |
Authors: | 李旻恆 Lee, Min-Heng |
Contributors: | 劉昭麟 Liu, Chao-Lin 李旻恆 Lee, Min-Heng |
Keywords: | 法益分析 案由分類 大型語言模型 提示工程 多案由推理 法律資訊檢索 Legal Interest Analysis Cause of Action Classification Large Language Models Prompt Engineering Multi-cause Reasoning Legal Information Retrieval |
Date: | 2025 |
Issue Date: | 2025-05-02 15:05:07 (UTC+8) |
Abstract: | 本研究提出一套結合法益分析與競合推理的法律案由分類框架(LCPF), 應用大型語言模型(如GPT-4o)解決多案由刑事案件分類中的解釋性與準確性 挑戰。研究針對檢察官起訴書中常見的「傷害」與「竊盜」案由,建立起一套 結構化提示方法,將法益識別、法條競合分析與刑罰輕重比較納入推理流程。 透過單輪與多輪提示策略的設計,模型能更清楚辨識多重法益並正確分類主案 由。在800 筆實驗資料中,LCPF 於多輪提示下可將準確率提升至97-98%,並 在法益分析任務中展現出更高的召回率與F1分數。研究亦探討其在RAG 架構 中的擴展應用與實際系統實作,並邀請專家進行評估。結果證明LCPF 在法律 資訊處理領域具有高度可行性與實務應用潛力,為未來法律AI發展提供關鍵支撐。 This study proposes a Legal Cause-Oriented Prompt Framework (LCPF) that integrates legal interest analysis and concurrence reasoning to address the challenges of explainability and accuracy in multi-cause criminal case classification using Large Language Models (LLMs) such as GPT-4o. Focusing on common indictment cases involving "injury" and "theft," the framework utilizes structured prompting strategies to guide the reasoning process through legal interest identification, legal concurrence analysis, and penalty severity comparison. By designing both single-step and multi-step prompting methods, the model is able to more precisely recognize overlapping legal interests and accurately classify the primary charge. In experiments on 800 samples, LCPF achieved accuracy rates of up to 97–98% with multi-step prompts, and demonstrated superior recall and F1 scores in legal interest recognition tasks. The study further explores the extension of LCPF into Retrieval-Augmented Generation (RAG) systems and presents an implemented legal chatbot evaluated by domain experts. Results show that LCPF is both practical and effective in processing legal information, offering a promising direction for future legal AI applications by enhancing both interpretability and reliability in complex legal scenarios. |
Reference: | [1] Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, I. (2020). LEGAL-BERT: The muppets straight out of law school. arXiv preprint arXiv:2010.02559. [2] Han, X., Sun, T., Chen, P., & Kuang, K. (2022). Ptr: Prompt tuning with rules for text classification. AI Open, 3, 182–192. [3] Jiang, C., & Yang, X. (2023). Legal syllogism prompting: Teaching large language models for legal judgment prediction. In Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law (pp. 417–421). [4] Katz, D. M., Bommarito, M. J., & Blackman, J. (2017). A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE, 12(4), e0174698. [5] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-shot reasoners. In Advances in Neural Information Processing Systems, 35, 22199–22213. [6] Medvedeva, M., Vols, M., & Wieling, M. (2018). Judicial decisions of the European Court of Human Rights: Looking into the crystal ball. In Proceedings of the Conference on Empirical Legal Studies (p. 24). [7] Medvedeva, M., & McBride, P. (2023, December). Legal judgment prediction: If you are going to do it, do it right. In Proceedings of the Natural Legal Language Processing Workshop 2023 (pp. 73–84). [8] Sartor, G., Palmirani, M., Rubino, R., & Pagallo, U. (2022). Thirty years of Artificial Intelligence and Law: The second decade. Artificial Intelligence and Law, 30(4), 521–557. 46 [9] Santosh, T. Y. S., Staliūnas, A., Medvedeva, M., & Wieling, M. (2022). Deconfounding legal judgment prediction for European court of human rights cases towards better alignment with experts. arXiv preprint arXiv:2210.13836. [10] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems, 35, 24824–24837. [11] Yu, F., Quartey, L., & Schilder, F. (2022). Legal prompting: Teaching a language model to think like a lawyer. arXiv preprint arXiv:2212.01326. [12] 黃詩淳; 邵軒磊. 以人工智慧讀取親權酌定裁判文本: 自然語言與文字探勘之實踐. 2020, 49.1:196-224. [13] 黃詩淳; 邵軒磊. 酌定子女親權之重要因素: 以決策樹方法分析相關裁判. 臺大法學論叢, 2018, 47.1: 299-344. [14] 黃詩淳。人工智慧對民事程序之影響。臺灣人工智慧行動網,人工智慧與法律規範學術研究群,第十一次會議。2020年五月廿八日。 [15] 王道維:當AI 科技應用於司法審判—以量刑預測、民刑事見解資料庫及家事親權案件調解為例。中央研究院,公共性與AI 論壇(三十三)。2024 年,七月卅一日。http://ai.iias.sinica.edu.tw/when-ai-is-used-in-judicial-adjudication-minutes/ [16] 許澤天,《刑法分則》(第4版),臺北:新學林出版社,2022 [17] 林鈺雄,《新刑法總則》(第5版),臺北:元照出版社,2016。 [18] 謝淳達,〈利用詞組檢索中文訴訟文書之研究〉,臺北:國立政治大學資訊科學系碩士論文,2005。47 [19] 藍家樑,〈中文訴訟文書檢索系統雛形實作〉,臺北:國立政治大學資訊科學系碩士論文,2008。 [20] 曹錫璋,〈基於深度學習模型之判決書情境相似檢索技術〉,臺中:國立中興大學資訊科學與工程學系碩士論文,2021。 [21] 蔡聖偉,〈想像競合從重處斷與輕罪的併科罰金──評最高法院111 年度台上字第977 號刑事判決〉,收入《月旦法學雜誌》,202407(350 期),頁6-23。 |
Description: | 碩士 國立政治大學 資訊科學系 112753118 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112753118 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
311801.pdf | | 5181Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|