English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 115589/146621 (79%)
造访人次 : 55815284      在线人数 : 34
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156766


    题名: Stablecoin depegging risk prediction
    作者: 謝明華
    Hsieh, Ming-Hua;Chen, Lee, Yi-His;Chiu, Yu-Fen
    贡献者: 風管系
    关键词: Stablecoins;Depegging;Machine learning
    日期: 2025-04
    上传时间: 2025-04-30 15:03:07 (UTC+8)
    摘要: This study aims to identify and analyze key factors contributing to depegging risks in stablecoins, consolidating insights from the literature into four critical categories: trading price and volume, market information, sentiment, and volatility. Utilizing these insights, we develop predictive models using three machine learning algorithms—logistic regression, random forest, and XGBoost—to accurately and timely predict stablecoin depegging events. Our primary subjects are the top four stablecoins by daily trading volume: USDT, USDC, BUSD, and DAI. Diverging from previous studies that employed static depegging thresholds, we adopt a dynamic threshold adjusted for trading volume. Additionally, this study is the first to incorporate sentiment indicators from news sources alongside traditional on-chain price and volume data. Covering the empirical period from January 1, 2022, to December 31, 2023. Our findings confirm that significant fluctuations in mainstream cryptocurrencies (BTC and ETH) indeed influence stablecoin depegging. While past literature's instability measures provide early warning effects, the sentiment indicators surprisingly did not show significant early warning effects for our research subjects. The models developed enable crypto asset investors to predict the risk of stablecoin depegging promptly, facilitating informed investment decisions and reducing investment risks.
    關聯: Pacific-Basin Finance Journal, Vol.90, 102640
    数据类型: article
    DOI 連結: https://doi.org/10.1016/j.pacfin.2024.102640
    DOI: 10.1016/j.pacfin.2024.102640
    显示于类别:[風險管理與保險學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML24检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈