政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/156620
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 115416/146442 (79%)
Visitors : 55260261      Online Users : 26
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/156620


    Title: 巨量資料下的二位元矩陣分解在財稅資料上的應用
    The Application of Binary Matrix Factorization in Large Amount of Taxation Data
    Authors: 曾正男
    Contributors: 應數系
    Keywords: 財稅資料;大資料;小樣本;二元矩陣分解;監督式學習;非監督式學習
    Taxation data;big data;few samplings;binary matrix factorization;supervised learning;unsupervised learning
    Date: 2019-11
    Issue Date: 2025-04-16 14:28:26 (UTC+8)
    Abstract: 財政部國稅局每年約有80萬筆報稅的資料,並且有相對少量的書審過程來稽核是否納稅義務人有逃漏稅的嫌疑。我們將設計一個混合unsupervised learning 和 supervised learning 的方法,並提出一種新的矩陣分解方式,從該矩陣的分解內容可以直接讀取對應不同類別的稅務資料在階層式分類法上清楚的說明是哪些變數造成分類的主要原因,並且同時在每一個特定的資料類別上,提供哪些是正常報稅,哪些是有逃漏稅可能的參考。這樣的架構,不只是在財稅之料上的應用,對於大數據的小樣本稽核都有同樣的幫助。
    The Internal Revenue Service of the Ministry of Finance reports about 800,000 tax filings each year and has a relatively small amount of book review to see whether the taxpayers are suspicious of tax evasion. We will design a hybrid unsupervised learning and supervised learning approach and propose a new binary matrix decomposition method that can be directly read from the decomposition of the matrix corresponding to different types of tax information. And at the same time, this matrix factorization helps us to identify the normal tax filings or not. The result of this research is not only applied on taxation data, but also on the application of small samples of big data.
    Relation: 科技部, MOST107-2115-M004-002, 107.08-108.07
    Data Type: report
    Appears in Collections:[Department of Mathematical Sciences] NSC Projects

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML13View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback