English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 115256/146303 (79%)
造訪人次 : 54507253      線上人數 : 11
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156435


    題名: 某些動態服務線上有效計算等候時間的方法(I)
    An Efficient Approach to Solving Certain Service Waiting Time with Dynamic Queueing Models
    作者: 陸行
    貢獻者: 應數系
    日期: 2017-12
    上傳時間: 2025-03-31 11:55:30 (UTC+8)
    摘要: 在此研究計畫中,我們調查受價格影響的佇列機制。這種機制包括兩個平行佇列,一個是收費 的佇列,另一個不收費。收費的佇列為了保證最大的等候時間,而且資源在預算控管下其佇列只 提供有限的位置;但不收費的佇列不受人數限制,其等候的時間可能比較長。顧客排隊時可以選 擇加入收費的佇列或不收費的佇列,我們要調查受收費佇列的價格會對兩種佇列產生何種影響。 因為排隊長度會影響顧客的付費意願,在計算時必須動態地考慮排隊人數變化對於整體等候時 間的影響,傳統的等候線計算模型無法呈現這種動態性的排隊機制。以類生死過程建立之計算矩 陣,其矩陣幾何解(Matrix geometric solution)需要佔用大量的計算時間。其傳統的計算方法也 無法有效性且快捷的找出相關的機率分配值。我們於計畫中提出以特徵值做核心的計算方法,解 出穩態機率分配(Stationary probability distribution)。以此機率分配可以依據排隊長度變化 快速地提出正確計算且有效之價格分析。第一年計畫內,我們將建立一計算方法和其理論分析與 證明,解出佇列的等候時間。第二年則將價格設為變數,計算價格對佇列的影響和繁忙系統(Busy period)的使用效率的機率分配。由於顧客以排隊的長度和價格作為是否加入收費佇列的依據,這 種動態變化不是傳統的繁忙系統公式所能解出,我們必須利用卡塔蘭組合數(Catalan number)建 立此系統的動態排隊行為模式,進而計算其機率分配,希望能有效地計算相關的評估再以模擬數 據驗證之。
    In this project, we look into a scheme of price-affected queues in which there is a two-tier service system with heterogeneous delay sensitivity via a two parallel queue model. A two-tier service system with one free and one toll service channels is constructed for consideration in the proposal. While the free system offers free service with a long wait time, the toll system offers paid service with a guaranteed maximum expected wait time. We investigate the effects of the toll system's pricing and service guarantee policies on the performance of the two-tier service system. Depending on the special structure of the infinitesimal generator matrix, some innovative and efficient computational algorithms are developed for evaluating their performance. In the first year, we will prove that the proposed approach is a more efficient algorithm than Geometric-Matrix method for solving this two-tier service queueing model, especially when the buffer size is large. After attaining the stationary probability it studies the busy period of a two-tier service system in the second year. A system state pathway formulation by Catalan numbers is given to compute the probabilities for serving $n$ customers in a busy period and expressions for the first two moments are to be derived. A study of transient queue length fluctuations during a busy period provides quantitative measures that enable proactive resource management for optimal system performance and capacity utilization.
    關聯: 科技部, MOST105-2221-E004-008, 106.08-107.07
    資料類型: report
    顯示於類別:[應用數學系] 國科會研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋