政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/156069
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114895/145933 (79%)
造訪人次 : 53867688      線上人數 : 824
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/156069


    題名: 應用文字探勘分析社群媒體標題對預售屋市場之影響 - 以新北市為例
    Analyzing the Impact of Social Media Headlines on the Pre-sale Housing Market Through Text Mining: A Case Study of New Taipei City
    作者: 蕭逢佐
    Hsiao, Feng-Tso
    貢獻者: 林左裕
    Lin, Tso-Yu
    蕭逢佐
    Hsiao, Feng-Tso
    關鍵詞: 文字探勘
    社群媒體標題情緒
    預售屋
    向量自我迴歸模型
    向量誤差修正模型
    Text Mining
    Social Media Headline Sentiment
    Google Trends
    Presale Housing
    Vector Autoregression Model
    Vector Error Correction Model
    日期: 2025
    上傳時間: 2025-03-03 15:17:19 (UTC+8)
    摘要: 不動產市場因具有「不可移動性」與「異質性」的特性,導致不同不動產之間存在顯著差異,並容易面臨「交易資訊不透明」的挑戰,尤其以預售屋交易為甚。受限於房價高門檻與資訊有限的特性,預售屋市場參與者往往受社群媒體資訊引導而產生「從眾」行為,進一步影響市場預期與交易結果。
    隨著數位化與科技的進步,社群媒體已成為預售屋市場參與者的重要參考資訊來源之一,逐漸取代傳統的報紙媒體。尤其是社群媒體上的標題情緒,對於市場參與者的買賣意向具有顯著影響。本研究旨在探討社群媒體標題情緒、Google Trends關鍵字搜尋指數與預售屋市場參與者心理預期之間的關聯性。探討運用文字探勘技術,將媒體情緒轉化為可量化的數據,並結合Google Trends關鍵字搜尋指數及總體經濟變數,將上述變數建立向量自我迴歸模型或向量誤差修正模型,全面分析社群媒體情緒與關鍵字搜尋趨勢對預售屋市場交易價格與交易量的影響。
    研究結果顯示,Google Trends關鍵字搜尋指數對預測預售屋交易價格與成交量具有顯著作用,且相較於社群媒體標題情緒,Google Trends關鍵字搜尋指數更能有效預測市場動態。當Google Trends關鍵字搜尋指數增加時,反映出市場參與者對預售屋市場的樂觀預期,進而促進交易價格與交易量的提升。結果驗證了研究假設,即Google Trends關鍵字搜尋指數與社群媒體標題情緒與預售屋成交價格及成交量之間存在正向關聯性。
    本研究深化了對預售屋市場動態的理解,並為政府制定健全的房市政策、金融機構設計風險保障機制的貸放政策,提供了實證支持。
    The real estate market's "immobility" and "heterogeneity" create significant property differences and challenges in "information asymmetry," especially in the presale housing sector. Due to high prices and limited information, market participants often rely on social media, leading to "herd behavior" that shapes expectations and transactions.
    With digitalization, social media has become a key information source, replacing traditional newspapers. In particular, sentiment in social media headlines significantly influences buying and selling decisions. This study examines the relationship between social media sentiment, Google Trends keyword search index, and presale market expectations. Using text mining, sentiment is quantified and combined with Google Trends data and macroeconomic variables to build a Vector Autoregression(VAR)or Vector Error Correction Model(VECM)to analyze their impact on transaction prices and volumes.
    Findings show that the Google Trends keyword search index effectively predicts presale housing prices and volumes, outperforming social media sentiment. An increase in search index reflects optimistic market expectations, driving up transactions. Results confirm a positive correlation between Google Trends, social media sentiment, and market performance.
    This study deepens understanding of presale market dynamics and provides empirical insights for policymakers and financial institutions in shaping housing policies and risk management strategies.
    參考文獻: 一、中文參考文獻
    (一)、專書
    林森田,2003,「土地經濟理論與分析」1版,臺北,林森田。
    林左裕,2018,「不動產投資管理」6版,臺北,智勝文化。
    梁仁旭、陳奉瑤,2006,「不動產估價」初版,臺北,陳奉瑤。
    楊奕農,2017,「時間序列分析 經濟與財務上之應用」,臺北,雙葉書廊有限公司。

    (二)、期刊
    朱芳妮、楊茜文、蘇子涵、陳明吉,2020,「情緒會影響房市嗎?指數編制與驗證」, 《住宅學報》,29,35-68。
    朱芳妮、高嘉璘、洪志興、陳明吉,2023,「社群媒體情緒與房市交易資訊關係之檢視」,『應用經濟論叢』,113:85-138。
    吳森田,1994,「所得,貨幣與房價-近二十年台北地區的觀察」,『住宅學報』,2:49-65。
    李政儒、游基鑫、陳信希,2012,「廣義知網詞彙意見極性的預測」,『中文計算語言學期刊』,17(2):21-36。
    李佳珍、盧永祥、丁安正,2012,「臺北市各區人口、家庭所得與房屋價格關聯性之研究」,『商業現代化學刊』,6(3):243-254。
    李美杏、陳威廷、彭建文,2014,「亞洲城市房價基值與泡沫」,『都市與計畫』,41(2):169-198。
    李政德,2019,「從社群網站看資訊流動」,科學人雜誌。
    周賓凰、池祥萱、周冠男、龔怡霖,2002,「行為財務學:文獻回顧與展望」,『證券市場發展季刊』,14:1-16。
    林秋瑾、黃佩玲,1995,「住宅價格與總體經濟變數關係之研究-以向量自我迴歸模式(VAR)進行實證」,『政大學報』,71:143-160。
    林秋瑾、王健安、張金鶚,1997,「房地產景氣與總體經濟景氣於時間上領先、同時、落後關係之探討」,『國家科學委員會研究彙刊;人文及社會科學』,7:1:35-56。
    林左裕,2011,「貨幣政策與房價的關係」,國科會補助計畫。
    林左裕、程于芳,2014,「影響不動產市場之從眾行為與總體經濟因素之研究」,『應用經濟論叢』,95:61-99。
    林左裕,2019,「應用網路搜尋行為預測房地產市場」,『應用經濟論叢』,105:221-257。
    洪淑娟、雷立芬,2010,「中古屋、預售屋/新成屋房價與總體經濟變數互動關係之研究」,『臺灣銀行季刊』,61(1):155-167。
    張金鶚、彭建文,2000,「總體經濟對房地產景氣之研究」,『國家科學委員會研究彙刊;人文及社會科學』,10(3):330-343。
    游和正、黃挺豪、陳信希,2012,「領域相關詞彙極性分析及文件情緒分類之研究」,『中文計算語言學期刊』,17(4):33-48。
    梅強、林尚毅,2017,「臺灣總體經濟變數對六都房價之影響分析」,『亞太經濟管理評論』,21(1):33-48。
    陳韋凡、古倫維,2018,「中文情感語意分析套件CSentiPackage發展與應用」,『圖書館學與資訊科學』,44(1):21-41。
    黃裕列、管中閔,2019,「美國聯準會會議紀要的文字探勘與臺灣經濟變數預測」,『經濟論文叢刊(Taiwan Economic Review』,47(3):363-391。
    鍾任明、李維平、吳澤民,2007,「運用文字探勘於日內股價漲跌趨勢預測之研究」,『中華管理評論國際學報』,10(1)。

    (三)、學位論文
    巫啟台,2002,「文件之關聯資訊萃取及其概念圖自動建構」,國立成功大學資訊工程學系碩士論文:台南。
    劉澤,2015,「以文字探為基礎之財務風險分析方法研究」,國立政治大學資訊科學系碩士論文:台北。
    林筱真,2016,「新聞媒體對於房價之影響」,國立政治大學地政系碩士論文:台北。
    邱聖皓,2018,「運用文字探勘技術於股價預測:考量基本面、技術面、籌碼面與消息面特徵」,國立中正大學資訊管理系碩士論文:嘉義。
    蕭伃婷,2018,「應用文字探勘技術於旅館服務特性品質診斷」,國立臺北大學企業管理系碩士論文:臺北。
    黃暄雅,2020,「網路社群情緒對住宅不動產市場之影響」,國立政治大學地政系碩士論文:臺北。

    二、外文參考文獻
    Andrew, Mark, and Geoffrey Meen, 2003, “House Price Appreciation, Transactions and Structural Change in the British Housing Market: A Macroeconomic Perspective.”, Real Estate Economics, 31(1):99-116.
    Baffoe-Bonnie, John, 1998, “The Dynamic Impact of Macroeconomic Aggregates on Housing Prices and Stock of Houses: A National and Regional Analysis. ”, The Journal of Real Estate Finance and Economics, 17(2):179-197.
    Dickey, A David, and Wayne A. Fuller, 1981, “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.”, The Econometric Society, 49(4):1057-1072.
    Engle, Robert F., and Clive W. J. Granger, 1987, “Co-Integration and Error Correction: Representation, Estimation, and Testing.”, Econometrica, 55(2):251-276.
    Granger, Clive W. J., and Paul Newbold, 1974, “Experience with Forecasting Univariate Time Series and the Combination of Forecasts.”, Journal of the Royal Statistical Society, 137(2):131-165.
    Hu, M., and Liu, B., 2004, “Mining Opinion Features in Customer Reviews Proceedings of the 19th National Conference on Artificial Intelligence. ”, 755-776.
    Himmelberg , C., Mayer, C., & Sinai, T., 2005, “Assessing High House Prices: Bubbles, Fundamentals and Misperceptions, The Journal of Economic Perspectives. ”, 19(4): 67–92.
    Jin, Changha, and Paul Gallimore, 2012, “Newspaper Content and Home Prices: Perception, Reasoning and Affect.”, Journal of the Korea Real Estate Analysts Association, 18(2):125-142.
    Johansen, S., 1988, “Statistical Analysis of Cointegration Vectors.”, Journal of Economic Dynamics and Control, 12(2-3):231-254.
    Keynes, J.M., 1936, “The General Theory of Employment, Interest and Money.”, London:Macmillan.
    Ku, L.W., Lo, Y. S., and Chen, H.-H., 2007, “Using polarity scores of words for sentence-level opinion extraction. Paper presented at the Proceedings of NTCIR-6 workshop meeting. ”, Tokyo, Japan.
    Loughran, T., and Mcdonald, B., 2011, “When Is A Liability Not A Liability? Textual Analysis, Dictionaries, and 10-Ks.”, The Journal of Finance, 66(1): 35-65.

    Ortalo-Magné, F., and Rady, S., 2006, “Housing Market Dynamics: On the Contribution of Income Shocks and Credit Constraints.”, The Review of Economic Studies, 73(2):459-485.
    Phillips, P. C. B. and Perron, P.,1988, “Testing for a unit root in time series regression.”, Biometrika, 75(2):335-346.
    Richards, Lyn, 2014, “Handling Qualitative Data: A Practical Guide.”, Sage.
    Shiller, Robert J., 2005, “Irrational Exuberance.”, Princeton, NJ:Princeton University Press.
    Shiller, Robert J., 2009, “Animal Spirits.”, Princeton, NJ:Princeton University Press.
    Shiller, Robert J., Stanley Fischer, and Benjamin M. Friedman, 1984, “Stock Prices and Social Dynamics.”, Brookings Papers on Economic Activity, 1984(2):457-510.
    Soo, C. K., 2015, “Quantifying Animal Spirits: News Media and Sentiment in the Housing Market.”, Ross School of Business Paper.
    Soo, C. K., 2018, “Quantifying Sentiment with News Media across Local Housing Markets. ” The Review of Financial Studies, 31(10), 3689-3719.
    Sullivan, D., 2001, “Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales”: John Wiley & Sons, Inc. New York, NY, USA
    Tetlock, P. C., 2007, “Giving Content to Investor Sentiment: The Role of Media in the Stock Market.”, The Journal of Finance, 62(3): 1139-1168.
    Tetlock, P. C., 2011, “All the News That’s Fit to Reprint:Do Investors React to Stale Information?”, Review of Financial Studies, 24(5):1481-1512.
    Tetlock, P. C., Maytal Saar-Tsechansky, and Sofus Macskassy, 2008, “More Than Words: Quantifying Language to Measure Firms’ Fundamentals.”, The Journal of Finance, 63(3):1437-1467.
    Tan, A. H., 1999, “Text mining: Promises and challenges. Paper presented at the Proceedings south east Asia research computer confederation (SEARCC99)”, Singapore City, Singapore.
    Turney, P. D., 2002, “Thumbs up or thumbs down? Semantic orientation applied to 55 unsupervised classification of reviews,” Paper presented at proceedings of the 40th Annual Meeting of the Association for Computational Linguistic, Philadelphia, Pennsylvania, USA, July 7th -July 12th .
    Walker, C. B., 2014, “Housing booms and media coverage. ”Applied Economics, 46(32), 3954-3967.
    Wu, J., and Y. Deng, 2015, “Intercity Information Diffusion and Price Discovery in Housing Markets: Evidence from Google Searches”, The Journal of Real Estate and Finance Economics, 50: 289-306.
    Wu, Lynn., and Erik Brynjolfsson., 2015, “The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales” , Economic analysis of the digital economy , University of Chicago Press,89-118.

    三、網頁參考
    內政部地政司: https://www.land.moi.gov.tw/chhtml/index.asp
    內政部統計處:https://www.moi.gov.tw/stat/index.aspx
    內政部營建署全球資訊網: https://www.cpami.gov.tw/
    內政部營建署城鄉發展分署: https://luz.tcd.gov.tw/web/default.aspx
    內政部不動產交易實價查詢服務網:https://lvr.land.moi.gov.tw/
    立法院法律系統:https://lis.ly.gov.tw/lglawc/lglawkm
    法務部全國法規資料庫: https://law.moj.gov.tw
    行政院主計總處:https://www.dgbas.gov.tw/
    中央大學臺灣經濟發展研究中心:http://rcted.ncu.edu.tw/
    ETtoday房產雲:https://www.facebook.com/ETtodayHouse
    好房網News:https://www.facebook.com/ohousefun
    591房屋交易網:https://www.facebook.com/tw591
    Yahoo奇摩房地產:https://www.facebook.com/YahooTW.House
    樂居網:https://www.facebook.com/Leju.tech
    Statcounter: https://gs.statcounter.com/
    DATAREPORTAL:https://datareportal.com/
    Google Trends:https://trends.google.com.tw/trends/
    中研院CKIP Lab中文詞知識庫小組:https://ckip.iis.sinica.edu.tw/
    國泰房地產指數季報:https://www.cathay-red.com.tw/tw/About/House
    臺灣經濟新報TEJ資料:https://schplus.tej.com.tw/
    OpView 社群口碑資料庫:https://www.opview.com.tw/
    KEYPO 大數據關鍵引擎:https://keypo.tw/
    描述: 碩士
    國立政治大學
    地政學系碩士在職專班
    109923017
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109923017
    資料類型: thesis
    顯示於類別:[地政學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    301701.pdf3307KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋