Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/156063
|
Title: | 失智症進展的心理社會決定因素:利用台灣老化長期研究的先進數據分析洞見 Psychosocial Determinants of Dementia Progression: Insights from Advanced Data Analytics using the Taiwan Longitudinal Study in Aging |
Authors: | 周曉林 Chow, Hiu-Lam |
Contributors: | 簡士鎰 Chien, Shih-Yi 周曉林 Chow, Hiu-Lam |
Keywords: | 機器學習 廣義線性混合效應模型樹 因果樹 因果森林 失智症 心理社會因素 縱向研究 Machine Learning Generalized Linear Mixed-effects Model Tree Causal Trees Causal Forests Dementia Psychosocial Factors Longitudinal Study |
Date: | 2024 |
Issue Date: | 2025-03-03 15:11:01 (UTC+8) |
Abstract: | 本研究探討失智症在老年人口中的進展情況,特別強調社會心理因素的影響。本研究利用中老年身心社會生活狀況長期追蹤調查(Taiwan Longitudinal Study in Aging, TLSA)數據,其中包含來自4869位個體在四個調查年度中的13088筆觀察數據,通過先進的數據分析技術來揭示社會心理因素與認知軌跡之間的複雜關係。本研究特別選擇使用具有可解釋性的樹狀模型,對於針對失智症進展的社會心理決定因素提供明確且可操作的見解。 分析首先使用了廣義線性混合效應模型樹(Generalized Linear Mixed-Effects Model, GLMM Tree),以識別對認知結果隨時間變化有顯著影響的關鍵社會心理因素。該模型的解釋性提供了一個穩健的框架,用於理解這些因素在失智症進展中所扮演的動態角色。接著,通過使用因果樹(Causal Trees)和因果森林(Causal Forests)對數據進行分段,揭示異質性治療效果以及不同子群體中干預措施的差異性影響。這方法通過GLMM樹識別相關的社會心理因素,隨後使用因果樹和因果森林精細化目標干預措施,旨在提高模型的預測準確性,並為受失智症影響的個體提供更精確及具個性化的護理策略。 This research investigates the progression of dementia within aging populations, with a particular emphasis on the influence of psychosocial factors. Utilizing data from the Taiwan Longitudinal Study in Aging, comprising 13088 observations from 4869 individuals over four survey years, advanced data analytics are applied to elucidate the intricate relationships between these factors and cognitive trajectories. The study employs tree-based models, specifically selected for their interpretability, which is critical for deriving clear and actionable insights into the psychosocial determinants of dementia progression. The analysis begins with the application of the Generalized Linear Mixed-Effects Model (GLMM) Tree to identify key psychosocial factors that significantly impact cognitive outcomes over time. The interpretability of this model provides a robust framework for understanding the dynamic role these factors play in the progression of dementia. Subsequently, Causal Trees and Causal Forests are employed to segment the data, revealing heterogeneous treatment effects and the differential impacts of interventions across distinct subgroups. This methodical approach—initially identifying pertinent psychosocial factors through the GLMM Tree, followed by the refinement of targeted interventions using Causal Trees and Causal Forests—aims to enhance the predictive accuracy of the models and generate more precise, personalized care strategies for individuals affected by dementia. |
Reference: | Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic Proceedings, 86(9), 876-884. https://doi.org/10.4065/mcp.2011.0252 Asghar, I., Cang, S., & Yu, H. (2022). The impact of assistive software application to facilitate people with dementia through participatory research. International Journal of Human- Computer Studies, 143, Article 102495. https://doi.org/10.1016/j.ijhcs.2020.102495 Athey, S., & Imbens, G. W. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353-7360. doi:10.1073/pnas.1510489113 Athey, S., & Wager, S. (2019). Estimating treatment effects with causal forests: An application. Observational Studies, 5(2), 37-51. University of Pennsylvania Press. https://doi.org/10.1353/obs.2019.0001 Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine, 28(25), 3083-3107. https://doi.org/10.1002/sim.3697 Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46(3), 399-424. https://doi.org/10.1080/00273171.2011.568786 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 Chernozhukov, V., Fernández-Val, I., & Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica, 78(3), 1093-1125. https://doi.org/10.3982/ECTA7880 Chien, S. Y., Chao, S. F., Kang, Y., Hsu, C., Yu, M. H., & Ku, C. T. (2022). Understanding predictive factors of dementia for older adults: A machine learning approach for modeling dementia influencers. International Journal of Human-Computer Studies, 165, Article 102834. https://doi.org/10.1016/j.ijhcs.2022.102834 Díaz-Uriarte, R., & Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, Article 3. https://doi.org/10.1186/1471-2105-7-3 Fokkema, M., Smits, N., Zeileis, A., Hothorn, T., & Kelderman, H. (2018). Detecting treatment- subgroup interactions in clustered data with generalized linear mixed-effects model trees. Behavior Research Methods, 50(5), 2016-2034. https://doi.org/10.3758/s13428-017-0971-x Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (3rd ed.). Thousand Oaks, CA: Sage. Retrieved from https://www.john-fox.ca/Companion/index.html Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343-353. https://doi.org/10.1016/S1474-4422(04)00767-7 Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects random forest for clustered data. Journal of Statistical Computation and Simulation, 84(6), 1313-1328. https://doi.org/10.1080/00949655.2012.741599 Hothorn, T., Zeileis, A., & Hornik, K. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press. Loh, W.-Y., He, X. and Man, M. (2015), A regression tree approach to identifying subgroups with differential treatment effects. Statistics in Medicine, 34(18), 1818-1833. https://onlinelibrary.wiley.com/doi/10.1002/sim.6454 National Development Council, Taiwan. (2023). Urban and Regional Development Statistics Republic of China (Taiwan) 2023. Retrieved from https://www.ndc.gov.tw/Content_List.aspx?n=4B99C493B8463009 Neugarten, B.L., Havighurst, R.J., Tobin, S.S., 1961. The Measurement of Life Satisfaction. Journal of Gerontology 16(2), 134–143. https://doi.org/10.1093/ geronj/16.2.134 Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press. Pfeiffer, E., 1975. A Short Portable Mental Status Questionnaire for the Assessment of Organic Brain Deficit in Elderly Patients. Journal of the American Geriatrics Society 23(10), 433–441. https://doi.org/10.1111/j.1532-5415.1975.tb00927.x R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101-141. Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55. Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3), 169–188. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurology, 11(11), 1006-1012. https://doi.org/10.1016/S1474-4422(12)70191-6 Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25(1), 1-21. Tibshirani, J., Athey, S., Friedberg, R., Hadad, V., Hirshberg, D., Miner, L., Sverdrup, E., Wager, S., & Wright, M. (2024). grf: Generalized Random Forests (Version 2.3.2) [R package]. https://CRAN.R-project.org/package=grf Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4), 441-454. https://doi.org/10.1017/S0033291705006264 Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228-1242. doi:10.1080/01621459.2017.1319839 Wiegelmann, H., Speller, S., Verhaert, L. M., Schirra-Weirich, L., & Wolf-Ostermann, K. (2021). Psychosocial interventions to support the mental health of informal caregivers of persons living with dementia – a systematic literature review. BMC Geriatrics, 21(1), Article 69. https://doi.org/10.1186/s12877-021-02069-7 Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1-17. https://doi.org/10.18637/jss.v077.i01 Yang, H., & Bath, P. A. (2020). The use of data mining methods for the prediction of dementia: Evidence from the English Longitudinal Study of Aging. IEEE Journal of Biomedical and Health Informatics, 24(2), 345-353. https://doi.org/10.1109/JBHI.2019.2917069 Zammit, A. R., Hall, C. B., Lipton, R. B., Katz, M. J., & Muniz-Terrera, G. (2018). Identification of Heterogeneous Cognitive Subgroups in Community-Dwelling Older Adults: A Latent Class Analysis of the Einstein Aging Study. Journal of the International Neuropsychological Society, 24(5), 511-523. DOI: 10.1017/S135561771700128X Zhang, M. L., & Zhou, Z. H. (2014). A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837. https://doi.org/10.1109/TKDE.2013.39 |
Description: | 碩士 國立政治大學 資訊管理學系 111356053 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111356053 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
605301.pdf | | 1396Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|