Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/156046
|
Title: | 以人工智慧方法探勘臺灣房市新聞之報導框架 Analyzing the Framing of Housing Policy News in Taiwan Using AI-Driven Approaches |
Authors: | 陳彥云 Chen, Yen-Yun |
Contributors: | 許志堅 Sheu, Jyh-Jian 陳彥云 Chen, Yen-Yun |
Keywords: | 房市政策新聞 人工智慧 框架理論 大型語言模型 Housing policy news Artificial Intelligence Framing Theory Large language model |
Date: | 2025 |
Issue Date: | 2025-03-03 14:49:58 (UTC+8) |
Abstract: | 近年來,隨著高房價問題的延續,臺灣政府接連推出多項房地產政策,以維持市場穩定。儘管許多研究探討政策的有效性,很少研究觸及政策傳播層面,致使公眾接收到的政策資訊為何無從得知。 由於市場資訊不對稱的特性,房市參與者和大眾高度依賴媒體提供的資訊,這一依賴在政策變動時尤其顯著,使媒體幾乎成為政策的主要解釋者。有鑑於此,本研究以近六年臺灣新聞媒體之房市新聞進行報導框架之分析,運用基於提示工程的人工智慧方法,更有效率且深入地分析大量新聞文本,考察媒體在不同情境下使用的敘事。 根據研究結果,媒體在房地產政策報導中呈現顯著的差異。此差異不僅體現在大眾媒體和房地產專業媒體的報導取向方面,也反映在媒體報導不同主旨政策的敘事著重。通過對報導文本的審視,研究發現房地產政策新聞的建構主要由悲觀敘事主導。在資訊來源上仰賴官方、專家等權威的話語,且常將政策形容為潛在問題,強調政府在其中的權責。 藉由分析臺灣房市政策之新聞文本,本研究探索社會科學研究的新興途徑,亦深入了解新聞報導在房市政策溝通中扮演的角色。期研究結果能為相關政策制定者及關心住房議題的民眾提供實務參考,並為後續相關研究奠定基礎。 In response to persistent housing unaffordability, the Taiwanese government has introduced a series of housing policies to stabilize the market. While these policies' effectiveness has been widely studied, their communication mechanisms remain underexplored, leaving the public's access to policy information largely unclear. Due to the structural asymmetry of market information, real estate stakeholders and the public rely heavily on media coverage, particularly during policy shifts, making the media a primary interpreter of policy measures. Against this backdrop, this study conducts a framing analysis of real estate news coverage in Taiwanese media over the past six years. By employing AI-driven prompt engineering, this study enables an efficient, in-depth analysis of a large corpus of news discourse, examining media narratives across different contexts. The analysis reveals significant discrepancies in how media outlets portray housing policies. These discrepancies are evident in the divergent news frame of mass media and industry-specific outlets and the varying narrative emphases across different policies. A textual analysis of news reports indicates that housing policy news is primarily framed through a pessimistic lens, with media narratives predominantly shaped by authoritative sources such as government officials and experts. Additionally, policies are frequently depicted as sources of concern, emphasizing governmental responsibilities and accountability. By integrating artificial intelligence into media analysis, this study explores an emerging methodological approach in social science research while deepening the understanding of media's role in housing policy communication. Future research can build on these findings to explore the intersection of media framing, policy discourse, and public perception more. |
Reference: | 一、 中文文獻 今周刊(2015)。青年居住大調查。取自https://www.storm.mg/article/45838 朱芳妮、陳明吉(2018)。從行為經濟學看台灣不動產市場: 羅伯特·席勒教授來台演講之省思與啟示。住宅學報,27(2),111-128。 朱芳妮、楊茜文、黃御維、陳明吉(2020)。媒體傳播效應與房市變化關聯性之驗證。Journal of Management & Business Research (2521-4306),37(3)。 江明珠、許秉凱(2019)。媒體新聞能否預測住房市場?。住宅學報,28(2),37-61。 自由時報(2023)。中國家庭負債逾340兆 負債比接近IMF紅線。自由時報。取自https://ec.ltn.com.tw/article/breakingnews/4385114 吳家德(2022)。房地產理論與實務。五南圖書出版股份有限公司。 政大商學院不動產研究發展中心(2024)。不動產百科。取自https://www.ncscre.nccu.edu.tw/encyclopedia?page=8 科技新報(2024)。香港房產崩盤,經濟學家稱這次很難反彈。科技新報TechNews。取自https://technews.tw/2024/05/20/real-estate-in-hk-is-drop/ 香港社會服務聯會(2012)。住房的條件:房屋政策新探。社聯政策報,12。 香港特別行政區政府統計處(2021)。香港人口的房屋特徵。取自https://www.census2021.gov.hk/doc/pub/21C_Articles_Housing.pdf 倪筱婷(2016)。新聞報導與政策擴散之關係-以台灣公共自行車政策為例。淡江大學公共行政學系公共政策碩士班學位論文,2016,1-166。 商業週刊(2024)。新青安貸款是什麼?申請條件為何?新青安房貸利率、寬限期、額度、申辦銀行一次看。取自https://www.businessweekly.com.tw/focus/blog/3012795 國立政治大學不動產研究中心(2024)。囤房稅引導有效供給 其他配套仍應強化。取自https://rer.nccu.edu.tw/article/detail/2403207786320 張琬喻、楊弘章、陳佳吟(2014)。新聞媒體報導對公司財務績效與股價之影響。證券市場發展季刊,26(1),113-146。https://doi.org/10.6529/rsfm.2014.26(1).4 喆律法律事務所(2023)。房地合一稅率實用小整理。取自https://zhelu.tw/post/integrated-housing-and-land-tax 臧國仁(1999)。新聞媒體與消息來源: 媒介框架與真實建構之論述。三民書局股份有限公司。 盧安邦、鄭宇君(2017)。用方法說故事:探析電腦輔助文本分析工具在框架研究之應用。傳播研究與實踐,7(2),145-178。https://doi.org/10.6123/JCRP.2017.018 顧洋愷(2023)。房地產政策歷史回顧。取自https://pdf.dfcfw.com/pdf/H301_AP202305101586440193_1.pdf
二、 英文文獻 Aggarwal, C. C., & Aggarwal, C. C. (2015). Mining text data. Springer. Alexander Dietzel, M., Braun, N., & Schäfers, W. (2014). Sentiment-based commercial real estate forecasting with Google search volume data. Journal of Property Investment & Finance, 32(6), 540-569. Allern, S. (2002). Journalistic and commercial news values. Nordicom review, 23(1-2), 137-152. Alonso del Barrio, D., & Gatica-Perez, D. (2023). Framing the news: from human perception to large language model inferences. Proceedings of the 2023 ACM International Conference on Multimedia Retrieval, Althaus, S. L., Edy, J. A., & Phalen, P. F. (2001). Using substitutes for full-text news stories in content analysis: Which text is best? American Journal of Political Science, 707-723. Aman, H., & Moriyasu, H. (2017). Volatility and public information flows: Evidence from disclosure and media coverage in the Japanese stock market. International Review of Economics & Finance, 51, 660-676. https://doi.org/https://doi.org/10.1016/j.iref.2017.07.029 Arestis, P., Gonzalez-Martinez, A. R., & Jia, L.-k. (2017). House price overvaluation in Hong Kong. International Journal of Housing Markets and Analysis, 10(2), 282-304. https://doi.org/10.1108/IJHMA-01-2016-0003 Arrese, Á., & Vara, A. (2018). The housing bubble in the Spanish press: A media discourse captured by the logic of elite to elite communication processes? The Political Economy of Communication, 6(2). Babbie, E. R. (2020). The practice of social research. Cengage Au. Bach, T., Weber, M., & Quiring, O. (2013). News frames, inter-media frame transfer and the financial crisis. Zeszyty Prasoznawcze, 56(1). Barber, B. M., & Odean, T. (2007). All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors. The Review of Financial Studies, 21(2), 785-818. https://doi.org/10.1093/rfs/hhm079 Barnhurst, K. G., & Nerone, J. (1991). Design Trends in U.S. Front Pages, 1885–1985. Journalism & mass communication quarterly, 68, 796 - 804. Belej, M., & Kulesza, S. (2015). The dynamics of time series of real estate prices. Real Estate Management and Valuation, 23(4), 35-43. Bell, A. (1984). Language style as audience design. Language in Society, 13, 145 - 204. Bobbitt, Z. (2021). What is Considered a “Good” F1 Score? Statology. https://www.statology.org/what-is-a-good-f1-score/ Borah, P. (2011). Conceptual Issues in Framing Theory: A Systematic Examination of a Decade's Literature. Journal of communication, 61(2), 246-263. https://doi.org/10.1111/j.1460-2466.2011.01539.x Borji, A., & Mohammadian, M. (2023). Battle of the wordsmiths: Comparing chatgpt, gpt-4, claude, and bard. GPT-4, Claude, and Bard (June 12, 2023). Boukes, M., & Vliegenthart, R. (2017). A general pattern in the construction of economic newsworthiness? Analyzing news factors in popular, quality, regional, and financial newspapers. Journalism, 21(2), 279-300. https://doi.org/10.1177/1464884917725989 Bourdieu, P. (1991). Language and symbolic power. Polity. Boydstun, A. E., Gross, J. H., Resnik, P., & Smith, N. A. (2013). Identifying media frames and frame dynamics within and across policy issues. New Directions in Analyzing Text as Data Workshop, London, Braun, J., Hausler, J., & Schäfers, W. (2020). Artificial intelligence, news sentiment, and property market liquidity. Journal of Property Investment & Finance, 38(4), 309-325. Brookes, G., & McEnery, T. (2019). The utility of topic modelling for discourse studies: A critical evaluation. Discourse Studies, 21(1), 3-21. https://doi.org/10.1177/1461445618814032 Brosius, H.-B., & Bathelt, A. (1994). The utility of exemplars in persuasive communications. Communication Research, 21(1), 48-78. Brown, D. K., Harlow, S., García-Perdomo, V., & Salaverría, R. (2018). A new sensation? An international exploration of sensationalism and social media recommendations in online news publications. Journalism, 19(11), 1497-1516. https://doi.org/10.1177/1464884916683549 Brown, T. B. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. Buhl, N. (2023). F1 Score in Machine Learning. ENCORD Blog. https://encord.com/blog/f1-score-in-machine-learning/ Burgers, C., Konijn, E. A., & Steen, G. J. (2016). Figurative framing: Shaping public discourse through metaphor, hyperbole, and irony. Communication theory, 26(4), 410-430. Burscher, B., Odijk, D., Vliegenthart, R., de Rijke, M., & de Vreese, C. H. (2014). Teaching the Computer to Code Frames in News: Comparing Two Supervised Machine Learning Approaches to Frame Analysis. Communication Methods and Measures, 8(3), 190-206. https://doi.org/10.1080/19312458.2014.937527 Burscher, B., Vliegenthart, R., & De Vreese, C. H. (2015). Using Supervised Machine Learning to Code Policy Issues:Can Classifiers Generalize across Contexts? The ANNALS of the American Academy of Political and Social Science, 659(1), 122-131. https://doi.org/10.1177/0002716215569441 Bushee, B. J., Core, J. E., Guay, W., & Hamm, S. J. (2010). The role of the business press as an information intermediary. Journal of accounting research, 48(1), 1-19. Campbell, J. L. (2001). 7. Institutional Analysis and the Role of Ideas in Political Economy. In L. C. John & K. P. Ove (Eds.), The Rise of Neoliberalism and Institutional Analysis (pp. 159-190). Princeton University Press. https://doi.org/doi:10.1515/9780691188225-011 Case, K. E., Shiller, R. J., & Thompson, A. (2012). What have they been thinking? Home buyer behavior in hot and cold markets. Chang, K.-K., & Lee, T.-T. (2020). The frame of the house: How elite news sources framed Taiwan’s housing policy. Newspaper Research Journal, 41(1), 88-116. https://doi.org/10.1177/0739532919873137 Charteris-Black, J. (2011). Politicians and rhetoric: The persuasive power of metaphor. Springer. Chen, J., Hu, M., & Lin, Z. (2019). Does housing unaffordability crowd out elites in Chinese superstar cities? Journal of housing economics, 45, 101571. https://doi.org/https://doi.org/10.1016/j.jhe.2018.03.003 Clapham, D. (2018). Housing Theory, Housing Research and Housing Policy. Housing, Theory and Society, 35(2), 163-177. https://doi.org/10.1080/14036096.2017.1366937 Clayton, J., Ling, D. C., & Naranjo, A. (2009). Commercial Real Estate Valuation: Fundamentals Versus Investor Sentiment. The Journal of Real Estate Finance and Economics, 38(1), 5-37. https://doi.org/10.1007/s11146-008-9130-6 Cox, W. (2023). Demographia International Housing Affordability-2023 Edition. Davis, A. (2003). Whither mass media and power? Evidence for a critical elite theory alternative. Media, Culture & Society, 25(5), 669-690. Davis, E. P., & Zhu, H. (2011). Bank lending and commercial property cycles: Some cross-country evidence. Journal of International Money and Finance, 30(1), 1-21. https://doi.org/https://doi.org/10.1016/j.jimonfin.2010.06.005 De Vreese, C. H. (2005). News framing: Theory and typology. Information design journal+ document design, 13(1), 51-62. Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Dingerkus, F., Dubied, A., Keel, G., Sacco, V., & Wyss, V. (2018). Journalists in Switzerland: Structures and attitudes revisited. Studies in Communication Sciences, 18(1), 117–129-117–129. Doling, J. (1997). Comparative Housing Policy: Government and Housing in Advanced Industrialized Countries. Macmillan. Eichholtz, P., & Lindenthal, T. (2014). Demographics, human capital, and the demand for housing. Journal of housing economics, 26, 19-32. Eisele, O., Heidenreich, T., Litvyak, O., & Boomgaarden, H. G. (2023). Capturing a News Frame – Comparing Machine-Learning Approaches to Frame Analysis with Different Degrees of Supervision. Communication Methods and Measures, 17(3), 205-226. https://doi.org/10.1080/19312458.2023.2230560 Engels, F., & Dutt, C. P. (1935). The housing question (Vol. 23). International Publishers New York. Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal of communication, 43(4), 51-58. Entman, R. M. (2010). Media framing biases and political power: Explaining slant in news of Campaign 2008. Journalism, 11(4), 389-408. https://doi.org/10.1177/1464884910367587 Fang, H., Gu, Q., Xiong, W., & Zhou, L.-A. (2016). Demystifying the Chinese housing boom. NBER macroeconomics annual, 30(1), 105-166. Fatemi, B., Rabbi, F., & Opdahl, A. L. (2023). Evaluating the Effectiveness of GPT Large Language Model for News Classification in the IPTC News Ontology. IEEE Access, 11, 145386-145394. https://doi.org/10.1109/ACCESS.2023.3345414 Feuerriegel, S., Ratku, A., & Neumann, D. (2016, 5-8 Jan. 2016). Analysis of How Underlying Topics in Financial News Affect Stock Prices Using Latent Dirichlet Allocation. 2016 49th Hawaii International Conference on System Sciences (HICSS), Field, A., Kliger, D., Wintner, S., Pan, J., Jurafsky, D., & Tsvetkov, Y. (2018). Framing and agenda-setting in Russian news: a computational analysis of intricate political strategies. arXiv preprint arXiv:1808.09386. Fiske, S. T. (1980). Attention and weight in person perception: The impact of negative and extreme behavior. Journal of personality and Social Psychology, 38(6), 889. Foye, C. (2022). Framing the housing crisis: How think-tanks frame politics and science to advance policy agendas. Geoforum, 134, 71-81. https://doi.org/https://doi.org/10.1016/j.geoforum.2022.05.015 Frieder, L., & Subrahmanyam, A. (2005). Brand perceptions and the market for common stock. Journal of financial and Quantitative Analysis, 40(1), 57-85. Gamson, W. A., & Modigliani, A. (1989). Media discourse and public opinion on nuclear power: A constructionist approach. American journal of sociology, 95(1), 1-37. Gilardi, F., Alizadeh, M., & Kubli, M. (2023). ChatGPT outperforms crowd workers for text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30), e2305016120. https://doi.org/doi:10.1073/pnas.2305016120 Glaeser, E., Huang, W., Ma, Y., & Shleifer, A. (2017). A real estate boom with Chinese characteristics. Journal of Economic Perspectives, 31(1), 93-116. Goffman, E. (1974). Frame analysis: An essay on the organization of experience. Northeastern UP. Goodman, A. C., & Kawai, M. (1982). Permanent income, hedonic prices, and demand for housing: New evidence. Journal of Urban Economics, 12(2), 214-237. Graf-Vlachy, L., Oliver, A. G., Banfield, R., König, A., & Bundy, J. (2020). Media Coverage of Firms: Background, Integration, and Directions for Future Research. Journal of Management, 46(1), 36-69. https://doi.org/10.1177/0149206319864155 Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267-297. https://doi.org/10.1093/pan/mps028 Gyourko, J. (2009). Understanding commercial real estate: just how different from housing is it? Han, S. (2024). Media framing in the digital age: Interplay of real estate and welfare narratives in South Korean news articles. Heliyon, 10(5). Han, S., & Kwon, H. Y. (2024). Home Ownership, House Prices, and Belief in Meritocracy: Evidence from South Korea and 34 Countries. Political Studies, 72(3), 1071-1089. https://doi.org/10.1177/00323217231176677 Hausler, J., Ruscheinsky, J., & Lang, M. (2018). News-based sentiment analysis in real estate: a machine learning approach. Journal of Property Research, 35(4), 344-371. https://doi.org/10.1080/09599916.2018.1551923 Herring, R. J., & Wachter, S. M. (1999). Real estate booms and banking busts: An international perspective. The Wharton School Research Paper(99-27). Heslop, J., & Ormerod, E. (2020). The politics of crisis: Deconstructing the dominant narratives of the housing crisis. Antipode, 52(1), 145-163. Hochstenbach, C. (2024). Framing the housing crisis: politicization and depoliticization of the Dutch housing debate. Housing Studies, 1-26. https://doi.org/10.1080/02673037.2024.2344844 Hollanders, D., & Vliegenthart, R. (2011). The influence of negative newspaper coverage on consumer confidence: The Dutch case. Journal of Economic Psychology, 32(3), 367-373. https://doi.org/https://doi.org/10.1016/j.joep.2011.01.003 Huang, F., Kwak, H., & An, J. (2023). Is ChatGPT better than Human Annotators? Potential and Limitations of ChatGPT in Explaining Implicit Hate Speech Companion Proceedings of the ACM Web Conference 2023, Austin, TX, USA. https://doi.org/10.1145/3543873.3587368 Isler, O., Flew, T., Erol, I., & Dulleck, U. (2021). Market news and credibility cues improve house price predictions: An experiment on bounded rationality in real estate. Journal of Behavioral and Experimental Finance, 31, 100550. https://doi.org/https://doi.org/10.1016/j.jbef.2021.100550 Jiao, W., Wang, W., Huang, J.-t., Wang, X., & Tu, Z. (2023). Is ChatGPT a good translator? A preliminary study. arXiv preprint arXiv:2301.08745, 1(10). Jo, W., & You, M. (2019). News media’s framing of health policy and its implications for government communication: A text mining analysis of news coverage on a policy to expand health insurance coverage in South Korea. Health Policy, 123(11), 1116-1124. https://doi.org/https://doi.org/10.1016/j.healthpol.2019.07.011 Juroš, J., Majer, L., & Šnajder, J. (2024). LLMs for Targeted Sentiment in News Headlines: Exploring the Descriptive-Prescriptive Dilemma. Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Kerlinger, F. N. (1966). Foundations of behavioral research. New York. Kim, C., & Ko, J. (2023). Unintended Consequences of Housing Policies: Evidence from South Korea. Sustainability, 15(4), 3407. https://www.mdpi.com/2071-1050/15/4/3407 Kim, E., Kim, A., & Moon, I. (2022). Government Intervention in Real Estate Market: Is Tax Reform Effective in Seoul Housing Market? In M. Kawano, K. Kourtit, P. Nijkamp, & Y. Higano (Eds.), Theory and History in Regional Perspective: Essays in Honor of Yasuhiro Sakai (pp. 221-243). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6695-7_12 Kim, S.-Y., & Oh, S.-J. (2016). A Study on the News Frame Analysis of Real Estate Policy. The Journal of the Korea Contents Association, 16(7), 221-230. Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24. Krippendorff, K. (2004). Reliability in content analysis: Some common misconceptions and recommendations. Human communication research, 30(3), 411-433. Kyriakidou, M., & Olivas Osuna, J. J. (2017). The indignados protests in the Spanish and Greek press: moving beyond the ‘protest paradigm’? European Journal of Communication, 32(5), 457-472. Lakoff, G. (2014). The all new don't think of an elephant!: Know your values and frame the debate. Chelsea Green Publishing. Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago press. Lamberg, J. J. J. (2016). Clothing the paper: on the state of newspaper design, redesigns, and art directors’ perspectives in contemporary quality and popular newspapers. Landriscina, M. (2012). Framing Inflation and Investment: The New York Times and the Cultural Context of a Local Housing Market. Qualitative Sociology, 35(3), 271-292. https://doi.org/10.1007/s11133-012-9230-8 Laskowska, E., & Torgomyan, S. (2016). The role of government in the housing market. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Problemy Rolnictwa Światowego, 16(4), 205-212. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 Lee, R. P., Chen, Q., & Hartmann, N. N. (2016). Enhancing stock market return with new product preannouncements: The role of information quality and innovativeness. Journal of Product Innovation Management, 33(4), 455-471. Li, J., Fang, W., Shi, Y., & Ren, C. (2022). Assessing economic, social and environmental impacts on housing prices in Hong Kong: a time-series study of 2006, 2011 and 2016. Journal of Housing and the Built Environment, 37(3), 1433-1457. https://doi.org/10.1007/s10901-021-09898-x Li, L., Fan, L., Atreja, S., & Hemphill, L. (2024). “HOT” ChatGPT: The Promise of ChatGPT in Detecting and Discriminating Hateful, Offensive, and Toxic Comments on Social Media. ACM Trans. Web, 18(2), Article 30. https://doi.org/10.1145/3643829 Li, L. H., & Cheung, K. S. (2017). Housing price and transaction intensity correlation in Hong Kong: implications for government housing policy. Journal of Housing and the Built Environment, 32(2), 269-287. https://doi.org/10.1007/s10901-016-9512-7 Liddy, E. D. (2001). Natural language processing. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras, R. L., Choi, Y., & Hajishirzi, H. (2021). Generated knowledge prompting for commonsense reasoning. arXiv preprint arXiv:2110.08387. Loughran, T., & McDonald, B. (2011). When Is a Liability NOT a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66, 35-65. https://doi.org/10.1111/j.1540-6261.2010.01625.x Loukas, L., Stogiannidis, I., Diamantopoulos, O., Malakasiotis, P., & Vassos, S. (2023). Making LLMs Worth Every Penny: Resource-Limited Text Classification in Banking Proceedings of the Fourth ACM International Conference on AI in Finance, Brooklyn, NY, USA. https://doi.org/10.1145/3604237.3626891 Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu, S.-C., Tafjord, O., Clark, P., & Kalyan, A. (2022). Learn to explain: Multimodal reasoning via thought chains for science question answering. Advances in neural information processing systems, 35, 2507-2521. Lucy, L., & Bamman, D. (2021). Gender and representation bias in GPT-3 generated stories. Proceedings of the third workshop on narrative understanding, Ma, J., & Huang, K. (2023). ChatGPT in Real Estate. In K. Huang, Y. Wang, F. Zhu, X. Chen, & C. Xing (Eds.), Beyond AI: ChatGPT, Web3, and the Business Landscape of Tomorrow (pp. 219-242). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45282-6_8 Maclennan, D. (1982). Housing Economics: An Applied Approach. In: Longman Ltd. Magin, M. (2019). Attention, please! Structural influences on tabloidization of campaign coverage in German and Austrian elite newspapers (1949–2009). Journalism, 20(12), 1704-1724. Manning, P. (2013). Financial journalism, news sources and the banking crisis. Journalism, 14(2), 173-189. Martin, L. (2021). Housing Policy in the News: In Praise of Markets, Problematizing Residents in Poverty. In The Routledge Companion to Media and Poverty (pp. 361-370). Routledge. Matthes, J. (2009). What's in a frame? A content analysis of media framing studies in the world's leading communication journals, 1990-2005. Journalism & mass communication quarterly, 86(2), 349-367. Matthes, J., & Kohring, M. (2008). The Content Analysis of Media Frames: Toward Improving Reliability and Validity. Journal of communication, 58(2), 258-279. https://doi.org/10.1111/j.1460-2466.2008.00384.x McKinsey & Company. (2017). HOUSING AFFORDABILITY: A SUPPLY-SIDE TOOL KIT FOR CITIES BRIEFING NOTE PREPARED FOR CITYLAB PARIS. McQuail, D. (1987). Mass communication theory: An introduction. Sage Publications, Inc. Mets, M., Karjus, A., Ibrus, I., & Schich, M. (2024). Automated stance detection in complex topics and small languages: the challenging case of immigration in polarizing news media. Plos one, 19(4), e0302380. Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. International Conference on Learning Representations, Miller, M. M. (1997). Frame Mapping and Analysis of News Coverage of Contentious Issues. Social Science Computer Review, 15(4), 367-378. https://doi.org/10.1177/089443939701500403 Miner, G. (2012). Practical text mining and statistical analysis for non-structured text data applications. Academic Press. Munro, M. (2018). House price inflation in the news: a critical discourse analysis of newspaper coverage in the UK. Housing Studies, 33(7), 1085-1105. https://doi.org/10.1080/02673037.2017.1421911 Nabi, R. L. (2003). Exploring the framing effects of emotion: Do discrete emotions differentially influence information accessibility, information seeking, and policy preference? Communication Research, 30(2), 224-247. Noh, J.-H., Kim, J.-j., Kim, S.-S., Ahn, E.-J., Lee, H.-I., & Lee, Y.-S. (2007). ANALYZING THE EFFECT OF THE RESIDENCE AND REAL ESTATE POLICIES ON HOUSING PRICE. International conference on construction engineering and project management, Norris, M., & Lawson, J. (2023). Tools to tame the financialisation of housing. New Political Economy, 28(3), 363-379. https://doi.org/10.1080/13563467.2022.2126447 Ollion, E., Shen, R., Macanovic, A., & Chatelain, A. (2023). ChatGPT for Text Annotation? Mind the Hype. SocArXiv preprint. Pastorino, V., Sivakumar, J. A., & Moosavi, N. S. (2024). Decoding News Narratives: A Critical Analysis of Large Language Models in Framing Bias Detection. arXiv preprint arXiv:2402.11621. Plößl, F., Martin Paulus, N., & Just, T. (2023). Trade vs. daily press: the role of news coverage and sentiment in real estate market analysis. Journal of Property Research, 40(4), 333-364. https://doi.org/10.1080/09599916.2023.2199764 Puri, R., & Catanzaro, B. (2019). Zero-shot text classification with generative language models. arXiv preprint arXiv:1912.10165. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. Reese, S. D. (2007). The Framing Project: A Bridging Model for Media Research Revisited. Journal of communication, 57(1), 148-154. https://doi.org/10.1111/j.1460-2466.2006.00334.x Reese, S. D. (2022). The institution of journalism: Conceptualizing the press in a hybrid media system. Digital Journalism, 10(2), 253-266. Reveilhac, M., & Morselli, D. (2022). Dictionary-based and machine learning classification approaches: a comparison for tonality and frame detection on Twitter data. Political Research Exchange, 4(1), 2029217. https://doi.org/10.1080/2474736X.2022.2029217 Riekert, M., Riekert, M., & Klein, A. (2021). Simple Baseline Machine Learning Text Classifiers for Small Datasets. SN Computer Science, 2(3), 178. https://doi.org/10.1007/s42979-021-00480-4 Romova, Z., & Varley, S. (2017). Is there a housing crisis in New Zealand or is it only a meatphor?: Results of a critical metaphor analsyis. New Zealand Studies in Applied Linguistics, 23(2), 80-100. Ruscheinsky, J. R., Lang, M., & Schäfers, W. (2018). Real estate media sentiment through textual analysis. Journal of Property Investment & Finance, 36(5), 410-428. Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A systematic survey of prompt engineering in large language models: Techniques and applications. arXiv preprint arXiv:2402.07927. Semetko, H. A., & Valkenburg, P. M. (2000). Framing European politics: A content analysis of press and television news. Journal of communication, 50(2), 93-109. Shanahan, M., McDonell, K., & Reynolds, L. (2023). Role play with large language models. Nature, 623(7987), 493-498. Shiller, R. J. (2000). Measuring Bubble Expectations and Investor Confidence. Journal of Psychology and Financial Markets, 1(1), 49-60. https://doi.org/10.1207/S15327760JPFM0101_05 Shoemaker, P. J., & Reese, S. D. (1996). Mediating the message. White Plains, NY: Longman. Shoemaker, P. J., & Reese, S. D. (2013). Mediating the message in the 21st century: A media sociology perspective. Routledge. Sing, T. F. (2001). Dynamics of the condominium market in Singapore. International Real Estate Review, 4(1), 135-158. Soo, C. K. (2018). Quantifying Sentiment with News Media across Local Housing Markets. The Review of Financial Studies, 31(10), 3689-3719. https://doi.org/10.1093/rfs/hhy036 Soroka, S. N. (2006). Good news and bad news: Asymmetric responses to economic information. The journal of Politics, 68(2), 372-385. Soroka, S. N. (2012). The gatekeeping function: Distributions of information in media and the real world. The journal of Politics, 74(2), 514-528. Sparks, C. (2000). Introduction: The panic over tabloid news. Tabloid tales: Global debates over media standards, 1-40. Suchman, M. C. (1995). Managing legitimacy: Strategic and institutional approaches. Academy of management review, 20(3), 571-610. Suraworachet, W., Seon, J., & Cukurova, M. (2024). Predicting challenge moments from students' discourse: A comparison of GPT-4 to two traditional natural language processing approaches Proceedings of the 14th Learning Analytics and Knowledge Conference, Kyoto, Japan. https://doi.org/10.1145/3636555.3636905 Törnberg, P. (2023). Chatgpt-4 outperforms experts and crowd workers in annotating political twitter messages with zero-shot learning. arXiv preprint arXiv:2304.06588. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267-307. https://doi.org/10.1162/COLI_a_00049 Teo, P. (2000). Racism in the News: A Critical Discourse Analysis of News Reporting in Two Australian Newspapers. Discourse & Society, 11(1), 7-49. https://doi.org/10.1177/0957926500011001002 Thompson, P. (2015). The mediation of financial information flows. Traders, analysts, journalists. The Media and Financial Crisis. London: Routledge, 169-186. Thompson, P. A. (2013). Invested interests? Reflexivity, representation and reporting in financial markets. Journalism, 14(2), 208-227. https://doi.org/10.1177/1464884912474201 Towbin, P., & Weber, S. (2015). Price Expectations and the U.S. Housing Boom. ERN: Price Level; Inflation; Deflation (Topic). Trussler, M., & Soroka, S. (2014). Consumer Demand for Cynical and Negative News Frames. The International Journal of Press/Politics, 19(3), 360-379. https://doi.org/10.1177/1940161214524832 Tuchman, G. (1972). Objectivity as strategic ritual: An examination of newsmen's notions of objectivity. American journal of sociology, 77(4), 660-679. Tuchman, G. (1978). Making news: A study in the construction of reality. In: Free Press. Van Hulst, M., & Yanow, D. (2016). From policy “frames” to “framing” theorizing a more dynamic, political approach. The American review of public administration, 46(1), 92-112. Vaswani, A. (2017). Attention is all you need. Advances in neural information processing systems. Von Luxburg, U., Williamson, R. C., & Guyon, I. (2012). Clustering: Science or art? Proceedings of ICML workshop on unsupervised and transfer learning, Walker, C. B. (2014). Housing booms and media coverage. Applied Economics, 46(32), 3954-3967. https://doi.org/10.1080/00036846.2014.948675 Watt, P., & Minton, A. (2016). London's housing crisis and its activisms. City, 20(2), 204-221. https://doi.org/10.1080/13604813.2016.1151707 Weaver, D. A., Lively, E., & Bimber, B. (2009). Searching for a Frame:News Media Tell the Story of Technological Progress, Risk, and Regulation. Science Communication, 31(2), 139-166. https://doi.org/10.1177/1075547009340345 Weber, R., Mangus, J. M., Huskey, R., Hopp, F. R., Amir, O., Swanson, R., Gordon, A., Khooshabeh, P., Hahn, L., & Tamborini, R. (2021). Extracting latent moral information from text narratives: Relevance, challenges, and solutions. In Computational Methods for Communication Science (pp. 39-59). Routledge. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837. Wetzstein, S. (2017). The global urban housing affordability crisis. Urban Studies, 54(14), 3159-3177. https://doi.org/10.1177/0042098017711649 White, I., & Nandedkar, G. (2021). The housing crisis as an ideological artefact: Analysing how political discourse defines, diagnoses, and responds. Housing Studies, 36(2), 213-234. https://doi.org/10.1080/02673037.2019.1697801 White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382. Wu, L., & Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales. In Economic analysis of the digital economy (pp. 89-118). University of Chicago Press. Wu, V. (2017). Hong Kong "mini" flats boom as government fails to rein in record-high prices. Reuters. https://www.reuters.com/article/uk-hongkong-property/hong-kong-mini-flats-boom-as-government-fails-to-rein-in-record-high-prices-idUKKBN1520MD/ Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., & Hooi, B. (2023). Can llms express their uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint arXiv:2306.13063. Yang, H.-F., & Seng, J.-L. (2017). Using sentiment analysis to explore the association between news and housing prices. Intelligent Information and Database Systems: 9th Asian Conference, ACIIDS 2017, Kanazawa, Japan, April 3–5, 2017, Proceedings, Part II 9, Zaller, J. (1992). The nature and origins of mass opinion. Cambridge University. Zhang, L., Wei, J., & Boncella, R. J. (2020). Emotional communication analysis of emergency microblog based on the evolution life cycle of public opinion. Information Discovery and Delivery, 48(3), 151-163. https://doi.org/10.1108/IDD-10-2019-0074 Zhao, B., Jin, W., Del Ser, J., & Yang, G. (2023). ChatAgri: Exploring potentials of ChatGPT on cross-linguistic agricultural text classification. Neurocomputing, 557, 126708. https://doi.org/https://doi.org/10.1016/j.neucom.2023.126708 Zhao, C., & Liu, F. (2023). Impact of housing policies on the real estate market - Systematic literature review. Heliyon, 9(10), e20704. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e20704 Zhong, Q., Ding, L., Liu, J., Du, B., & Tao, D. (2023). Can ChatGPT Understand Too? A Comparative Study on ChatGPT and Fine-tuned BERT. ArXiv, abs/2302.10198. |
Description: | 碩士 國立政治大學 傳播學院傳播碩士學位學程 110464006 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110464006 |
Data Type: | thesis |
Appears in Collections: | [傳播學院傳播碩士學位學程] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
400601.pdf | | 4422Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|