Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/156018
|
Title: | 作答反應與反應時間聯合模式的擴展與應用 Extensions and applications of joint modeling for responses and response times |
Authors: | 蔡介文 Tsai, Jie-Wen |
Contributors: | 余民寧 Yu, Min-Ning 蔡介文 Tsai, Jie-Wen |
Keywords: | 試題反應模式 反應時間模式 Gibbs抽樣 Pólya-Gamma分配 不對稱 Laplace分配 item response modeling response time modeling Gibbs sampler Pólya-Gamma distribution asymmetric Laplace distribution |
Date: | 2025 |
Issue Date: | 2025-03-03 14:42:24 (UTC+8) |
Abstract: | 本研究提出作答反應與反應時間聯合模式(RT-IRT 模式)的三個新擴展。這些擴展是貝氏統計中資料擴增 (DA) 策略的應用。具體來說,是利用 Pólya-Gamma (PG) 分配在 logistic 模式中實作 Gibbs 抽樣器,以及利用不對稱 Laplace 分配 (ALD) 在貝氏分量迴歸 (BQR) 中實作 Gibbs 抽樣器。
本論文包含三項主要研究。第一項研究將 PG Gibbs 抽樣器應用於 logistic RT-IRT 模式、第二項研究將 BQR 引進潛在迴歸的 RT-IRT 模式、第三項研究將 BQR 加入具有交叉關係的 RT-IRT 模式。
透過模擬研究和 TIMSS 2019 數學測驗的真實資料分析,本研究得到三個主要發現。第一,PG 方法比傳統方法(包括 MLE)表現更佳,尤其是在樣本較小(250 人)和測驗較短(15 題)的情況下。另外,在模擬條件下,BQR 在潛在迴歸模式和交叉關係模式上都表現有效。然而,對於 BQR 潛在迴歸模式,在不同分量位置上,迴歸係數並沒有明顯變化效果。相比之下,BQR 交叉關係模式在不同分量位置中顯示出明顯的交叉負荷,尤其在第 40 分量附近的模式適配效果更佳。
三種模式都具有良好的收斂特性,所有參數都在 5000 次迭代的預熱期內達到穩定。整體來說,PG Gibbs 抽樣有助於整合 logistic IRT 模式,而 BQR 方法比平均迴歸模式更加靈活且有效。此外,本研究利用 Julia 開發的統計套件支援上述擴展,讓研究人員能夠分析教育測驗中的 RT-IRT 模式。 This study proposed three new extensions of the joint modeling for responses and response times (RT-IRT models). These extensions are applications of data augmentation (DA) strategies in the Bayesian statistics. Specifically, the study utilizes the Pólya-Gamma (PG) distribution for implementing Gibbs sampler in logistic models, and the asymmetric Laplace distribution (ALD) for implementing Gibbs sampler in Bayesian quantile regressions (BQR).
Three major studies were conducted. The first study applied the PG Gibbs sampler to the logistic RT-IRT models, The second study introduced the BQR to the latent regression RT-IRT models, and the third study added the BQR to the RT-IRT models with cross-relations.
Through simulation studies and real data analyses using TIMSS 2019 mathematics assessment, the research revealed three key findings. One is that the PG method demonstrated better performance than traditional approaches, including MLE, particularly with smaller samples (N=250) and shorter tests (15 items). Another is that the BQR model performed effectively under simulation conditions for both latent regression and cross-relation models. However, for the BQR-based latent regression, it showed no obvious change effects of regression coefficients in different quantile levels. In contrast, the BQR-based cross-relation model shows significant cross-loadings across quantile levels, with better model fit around the 40th quantile.
All three models showed good convergence properties, with parameters stabilizing within the burn-in 5000 iterations. Overall, the PG Gibbs sampling facilitates the incorporation of logistic IRT models, while BQR approaches are more flexible and effective than mean regression models. Moreover, a statistical package developed in Julia supports these extensions, enabling researchers to analyze RT-IRT models in educational testing. |
Reference: | Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. *Journal of Educational Statistics, 17*(3), 251–269. https://doi.org/10.3102/10769986017003251
Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. *Journal of the American Statistical Association, 88*(422), 669–679. https://doi.org/10.1080/01621459.1993.10476321
Asparouhov, T., & Muthén, B. (2021). Expanding the Bayesian structural equation, multilevel and mixture models to logit, negative-binomial, and nominal variables. *Structural Equation Modeling: A Multidisciplinary Journal, 28*(4), 622–637. https://doi.org/10.1080/10705511.2021.1878896
Balamuta, J. J., & Culpepper, S. A. (2022). Exploratory restricted latent class models with monotonicity requirements under Pólya–Gamma data augmentation. *Psychometrika, 87*, 903–945. https://doi.org/10.1007/s11336-021-09815-9
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. *Psychonomic Bulletin & Review, 6*(1), 57–86.
Becker, B., Weirich, S., Goldhammer, F., & Debeer, D. (2023). Controlling the speededness of assembled test forms: A generalization to the three-parameter lognormal response time model. *Journal of Educational Measurement, 60*(4), 551–574.
Becker, B., Debeer, D., Weirich, S., & Goldhammer, F. (2021). On the speed sensitivity parameter in the lognormal model for response times and implications for high-stakes measurement practice. *Applied Psychological Measurement, 45*(6), 407–422. https://doi.org/10.1177/01466216211008530
Benoit, D. F., & Poel, D. Van den. (2017). bayesQR: A Bayesian approach to quantile regression. *Journal of Statistical Software, 76*(7), 1–32. https://doi.org/10.18637/jss.v076.i07
Beyerlein, A. (2014). Quantile regression—opportunities and challenges from a user's perspective. *American Journal of Epidemiology, 180*(3), 330–331. https://doi.org/10.1093/aje/kwu178
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. *SIAM Review, 59*(1), 65–98. https://doi.org/10.1137/141000671
Bockenholt, U. (2012). Modeling multiple response processes in judgment and choice. *Psychological Methods, 17*(4). https://doi.org/10.1037/a0028111
Bolsinova, M., & Maris, G. (2015). A test for conditional independence between response time and accuracy. *British Journal of Mathematical and Statistical Psychology, 69*(1), 62–79. https://doi.org/10.1111/bmsp.12059
Bolsinova, M., & Molenaar, D. (2018). Modeling nonlinear conditional dependence between response time and accuracy. *Frontiers in Psychology, 9*, 1525. https://doi.org/10.3389/fpsyg.2018.01525
Bolsinova, M., & Tijmstra, J. (2016). Posterior predictive checks for conditional independence between response time and accuracy. *Journal of Educational and Behavioral Statistics, 41*(2), 123–145. https://doi.org/10.3102/1076998616631746
Bolsinova, M., & Tijmstra, J. (2018). Improving precision of ability estimation: Getting more from response times. *British Journal of Mathematical and Statistical Psychology, 71*(1), 13–38.
Bolsinova, M., Boeck, P. de, & Tijmstra, J. (2017a). Modelling conditional dependence between response time and accuracy. *Psychometrika, 82*, 1126–1148. https://doi.org/10.1002/s11336-016-9537-6
Bolsinova, M., Tijmstra, J., & Molenaar, D. (2017b). Response moderation models for conditional dependence between response time and response accuracy. *British Journal of Mathematical and Statistical Psychology, 70*(2), 257–279. https://doi.org/10.1111/bmsp.12076
Bolsinova, M., Tijmstra, J., Molenaar, D., & De Boeck, P. (2017c). Conditional dependence between response time and accuracy: An overview of its possible sources and directions for distinguishing between them. *Frontiers in Psychology, 8*. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00202
Burgette, L. F., & Reiter, J. P. (2012). Modeling adverse birth outcomes via confirmatory factor quantile regression. *Biometrics, 68*(1), 92–100.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software, 80*(1). https://doi.org/10.18637/jss.v080.i01
Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. *The American Statistician, 46*(3), 167–174.
Cho, S.-J., Brown-Schmidt, S., Boeck, P. D., & Shen, J. (2020). Modeling intensive polytomous time-series eye-tracking data: A dynamic tree-based item response model. *Psychometrika, 85*(1), 154–184. https://doi.org/10.1007/s11336-020-09694-6
Choi, H. M., & Hobert, J. P. (2013). The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic. *Electronic Journal of Statistics, 7*, 2054–2064. https://doi.org/10.1214/13-EJS837
Curtis, S. M. (2010). BUGS code for item response theory. *Journal of Statistical Software, 36*(Code Snippet 1). https://doi.org/10.18637/jss.v036.c01
De Boeck, P., & Partchev, I. (2012). IRTrees: Tree-Based item response models of the GLMM family. *Journal of Statistical Software, 48*(1), 1–28. https://doi.org/10.18637/jss.v048.c01
De Boeck, P., & Jeon, M. (2019). An overview of models for response times and processes in cognitive tests. *Frontiers in Psychology, 10*. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00102
Debelak, R., Gittler, G., & Arendasy, M. (2014). On gender differences in mental rotation processing speed. *Learning and Individual Differences, 29*, 8–17. https://doi.org/10.1016/j.lindif.2013.10.003
DiTrapani, J., Jeon, M., De Boeck, P., & Partchev, I. (2016). Attempting to differentiate fast and slow intelligence: Using generalized item response trees to examine the role of speed on intelligence tests. *Intelligence, 56*, 82–92. https://doi.org/10.1016/j.intell.2016.02.012
Dolan, C. V., Maas, H. L. J. van der, & Molenaar, P. C. M. (2002). A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring. *Behavior Research Methods, Instruments, & Computers, 34*(3), 304–323. https://doi.org/10.3758/bf03195458
Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. *Zeitschrift Für Psychologie/Journal of Psychology, 217*(3), 108. https://doi.org/10.1027/0044-3409.217.3.108
Ferrando, P. J., & Lorenzo-Seva, U. (2007). An item response theory model for incorporating response time data in binary personality items. *Applied Psychological Measurement, 31*(6), 525–543. https://doi.org/10.1177/0146621606295197
Fox, J.-P., & Glas, C. A. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. *Psychometrika, 66*, 271–288.
Fox, J.-P., & Marianti, S. (2016). Joint modeling of ability and differential speed using responses and response times. *Multivariate Behavioral Research, 51*(4), 540–553. https://doi.org/10.1080/00273171.2016.1171128
Fox, J.-P., Entink, R. K., & Linden, W. v. d. (2007). Modeling of responses and response times with the package cirt. *Journal of Statistical Software, 20*(7). https://doi.org/10.18637/jss.v020.i07
Fu, Z., & Lu, M. (2023). Bayesian inference for multidimensional graded response model using Pólya-Gamma latent variables. *Journal of Statistical Computation and Simulation, 93*(16), 2856–2887. https://doi.org/10.1080/00949655.2023.2212313
Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin, D. (2013). *Bayesian Data Analysis* (3rd ed.). Taylor & Francis.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. *Statistical Science, 7*(4), 457–472. https://doi.org/10.1214/ss/1177011136
Gelman, A., & Vehtari, A. (2021). What are the most important statistical ideas of the past 50 years? *Journal of the American Statistical Association, 116*(536), 2087–2097. https://doi.org/10.1080/01621459.2021.1938081
Glas, C. A. W., & Linden, W. J. van der. (2010). Marginal likelihood inference for a model for item responses and response times. *British Journal of Mathematical and Statistical Psychology, 63*(3), 603–626. https://doi.org/10.1348/000711009x481360
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika, 57*(1), 97–109. https://doi.org/10.1093/biomet/57.1.97
Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research, 15*.
Huang, P.-H., Chen, H., & Weng, L.-J. (2017). A penalized likelihood method for structural equation modeling. *Psychometrika, 82*(2), 329–354. https://doi.org/10.1007/s11336-017-9566-9
Huang, Y., & Chen, J. (2016). Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features. *Statistics in Medicine, 35*, 5666–5685. https://doi.org/10.1002/sim.7092
Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. *Structural Equation Modeling: A Multidisciplinary Journal, 23*(4), 555–566. https://doi.org/10.1080/10705511.2016.1154793
Jeon, M., & De Boeck, P. (2016). A generalized item response tree model for psychological assessments. *Behavior Research Methods, 48*(3), 1070–1085. https://doi.org/10.3758/s13428-015-0631-y
Jiang, Z., & Carter, R. (2018). Using Hamiltonian Monte Carlo to estimate the log-linear cognitive diagnosis model via Stan. *Behavior Research Methods, 51*(2), 651–662. https://doi.org/10.3758/s13428-018-1069-9
Jiang, Z., & Templin, J. (2019). Gibbs samplers for logistic item response models via the Pólya—Gamma distribution: A computationally efficient data-augmentation strategy. *Psychometrika, 84*(2), 358–374. https://doi.org/10.1007/s11336-018-9641-x
Jin, K.-Y., Wu, Y.-J., & Chen, H.-F. (2022). A new multiprocess IRT model with ideal points for Likert-type items. *Journal of Educational and Behavioral Statistics, 47*(3), 297–321. https://doi.org/10.3102/10769986211057160
Klein Entink, R. H., Fox, J.-P., & van der Linden, W. J. (2009a). A multivariate multilevel approach to the modeling of accuracy and speed of test takers. *Psychometrika, 74*, 21–48. https://doi.org/10.1007/s11336-008-9075-y
Klein Entink, R. H., Kuhn, J.-T., Hornke, L. F., & Fox, J.-P. (2009b). Evaluating cognitive theory: A joint modeling approach using responses and response times. *Psychological Methods, 14*(1), 54–75. https://doi.org/10.1037/a0014877
Klein Entink, R. H., Linden, W. J. van der, & Fox, J.-P. (2009c). A Box-Cox normal model for response times. *British Journal of Mathematical and Statistical Psychology, 62*, 621–640. https://doi.org/10.1348/000711008X374126
Koenker, R. (2005). *Quantile Regression*. Cambridge University Press.
Koenker, R., & Bassett, G. J. (1978). Regression quantiles. *Econometrica, 46*, 33–50. https://doi.org/10.2307/1913643
Kozumi, H., & Kobayashi, G. (2011). Gibbs sampling methods for Bayesian quantile regression. *Journal of Statistical Computation and Simulation, 81*(11), 1565–1578. https://doi.org/10.1080/00949655.2010.496117
Kyllonen, P. C., & Zu, J. (2016). Use of response time for measuring cognitive ability. *Journal of Intelligence, 4*(4), 14. https://doi.org/10.3390/jintelligence4040014
König, C., Becker, B., & Ulitzsch, E. (2023). Bayesian hierarchical response time modelling - A tutorial. *The British Journal of Mathematical and Statistical Psychology, 76*. https://doi.org/10.1111/bmsp.12302
Lee, Y.-H. (2007). *Contributions to the statistical analysis of item response time in educational testing*.
Lee, Y.-H., & Chen, H. (2011). A review of recent response-time analyses in educational testing. *Psychological Test and Assessment Modeling, 53*(3), 359–379.
Lindeløv, J. K. (2019, September). Reaction time distributions: An interactive overview. https://lindeloev.github.io/shiny-rt/#38_gamma
Linden, W. J. van der. (2009). Conceptual issues in response-time modeling. *Journal of Educational Measurement, 46*(3), 247–272. https://doi.org/10.1111/j.1745-3984.2009.00080.x
Linden, W. J. van der, & Glas, C. A. W. (2010). Statistical tests of conditional independence between responses and/or response times on test items. *Psychometrika, 75*(1), 120–139. https://doi.org/10.1007/s11336-009-9129-9
Luo, Y., & Jiao, H. (2017). Using the Stan program for Bayesian item response theory. *Educational and Psychological Measurement, 78*(3), 384–408. https://doi.org/10.1177/0013164417693666
Man, K., Harring, J. R., Jiao, H., & Zhan, P. (2019). Joint modeling of compensatory multidimensional item responses and response times. *Applied Psychological Measurement, 43*(8), 639–654. https://doi.org/10.1177/0146621618824853
Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov Chain Monte Carlo in R. *Journal of Statistical Software, 42*(9), 1–21. https://doi.org/10.18637/jss.v042.i09
McElreath, R. (2020). *Statistical Rethinking* (2nd ed.). Chapman, Hall/CRC. https://doi.org/10.1201/9780429029608
Meng, X.-B., Tao, J., & Chang, H.-H. (2015). A conditional joint modeling approach for locally dependent item responses and response times. *Journal of Educational Measurement, 52*(1), 1–27. https://doi.org/10.1111/jedm.12060
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. *The Journal of Chemical Physics, 21*(6), 1087–1092. https://doi.org/10.1063/1.1699114
Molenaar, D., & Boeck, P. de. (2018). Response mixture modeling: Accounting for heterogeneity in item characteristics across response times. *Psychometrika, 83*(2), 279–297. https://doi.org/10.1007/s11336-017-9602-9
Molenaar, D., & Bolsinova, M. (2017). A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times. *British Journal of Mathematical and Statistical Psychology, 70*(2), 297–316. https://doi.org/10.1111/bmsp.12087
Molenaar, D., Bolsinova, M., & Vermunt, J. K. (2018). A semi-parametric within-subject mixture approach to the analyses of responses and response times. *British Journal of Mathematical and Statistical Psychology, 71*(2), 205–228. https://doi.org/10.1111/bmsp.12117
Molenaar, D., Bolsinova, M., Rozsa, S., & De Boeck, P. (2016b). Response mixture modeling of intraindividual differences in responses and response times to the Hungarian WISC-IV block design test. *Journal of Intelligence, 4*(3), 10. https://doi.org/10.3390/jintelligence4030010
Molenaar, D., Oberski, D., Vermunt, J., & Boeck, P. D. (2016a). Hidden Markov item response theory models for responses and response times. *Multivariate Behavioral Research, 51*(5), 606–626. https://doi.org/https://doi.org/10.1080/00273171.2016.1192983
Molenaar, D., Tuerlinckx, F., & Van Der Maas, H. L. J. (2015a). A bivariate generalized linear item response theory modeling framework to the analysis of responses and response times. *Multivariate Behavioral Research, 50*(1), 56–74. https://doi.org/10.1080/00273171.2014.962684
Molenaar, D., Tuerlinckx, F., & Van Der Maas, H. L. J. (2015b). A generalized linear factor model approach to the hierarchical framework for responses and response times. *British Journal of Mathematical and Statistical Psychology, 68*(2), 197–219. https://doi.org/10.1111/bmsp.12042
Muthén, L. K., & Muthén, B. O. (2017). *Mplus: Statistical analysis with latent variables; user's guide;[version 8]*. Muthén et Muthén.
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika, 81*(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8
Oka, M., & Okada, K. (2023). Scalable Bayesian approach for the DINA Q-matrix estimation combining stochastic optimization and variational inference. *Psychometrika, 88*, 302–331. https://doi.org/10.1007/s11336-022-09884-4
Okumura, T. (2014). Empirical differences in omission tendency and reading ability in PISA: An application of tree-based item response models. *Educational and Psychological Measurement, 74*(4), 611–626. https://doi.org/10.1177/0013164413516976
Partchev, I., & De Boeck, P. (2012). Can fast and slow intelligence be differentiated? *Intelligence, 40*(1), 23–32. https://doi.org/10.1016/j.intell.2011.11.002
Plieninger, H., & Meiser, T. (2014). Validity of multiprocess IRT models for separating content and response styles. *Educational and Psychological Measurement, 74*(5), 875–899. https://doi.org/10.1177/0013164413514998
Plummer, M. (2022). *JAGS Version 4.3.1 user manual*. Lyon, France.
Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. *Journal of the American Statistical Association, 108*(504), 1339–1349. https://doi.org/10.1080/01621459.2013.829001
Porter, S. R. (2015). Quantile regression: Analyzing changes in distributions instead of means. In M. Paulsen (Ed.), *Higher Education: Handbook of Theory and Research: Vol. 30. Higher Education: Handbook of Theory and Research*. Springer. https://doi.org/10.1007/978-3-319-12835-1_8
Ranger, J., & Ortner, T. (2012). The case of dependency of responses and response times: A modeling approach based on standard latent trait models. *Psychological Test and Assessment Modeling, 54*(2), 128–148.
Ranger, J., Kuhn, J. T., & Ortner, T. M. (2020). Modeling responses and response times in tests with the hierarchical model and the three-parameter lognormal distribution. *Educational and Psychological Measurement, 80*(6), 1059–1089. https://doi.org/10.1177/0013164420908916
Ranger, J., Kuhn, J.-T., & Pohl, S. (2021). Effects of motivation on the accuracy and speed of responding in tests: The speed-accuracy tradeoff revisited. *Measurement: Interdisciplinary Research and Perspectives, 19*(1), 15–38. https://doi.org/10.1080/15366367.2020.1750934
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. *Psychological Science, 9*(5), 347–356. https://doi.org/10.1111/1467-9280.00067
Rijn, P. W. van, & Ali, U. S. (2018). A Generalized Speed–Accuracy Response Model for Dichotomous Items. *Psychometrika, 83*, 109–131. https://doi.org/10.1007/s11336-017-9590-9
Rios-Avila, F., & Maroto, M. L. (2024). Moving Beyond Linear Regression: Implementing and Interpreting Quantile Regression Models With Fixed Effects. *Sociological Methods & Research, 53*(2), 639–682. https://doi.org/10.1177/00491241211036165
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software, 48*(2). https://doi.org/10.18637/jss.v048.i02
Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. *Psychonomic Bulletin & Review, 12*(2), 195–223. https://doi.org/10.3758/bf03257252
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society Series B: Statistical Methodology, 64*(4), 583–639. https://doi.org/10.1111/1467-9868.00353
Stan Development Team. (2022). *Stan Modeling Language Users Guide and Reference Manual* (Version 2.31). https://mc-stan.org/
Tijmstra, J., & Bolsinova, M. (2023). The Hierarchical Model for Response Times: Advantages, Limitations, and Risks of Its Use in Measurement Practice. In L. A. van der Ark, W. H. M. Emons, & R. R. Meijer (Eds.), *Essays on Contemporary Psychometrics: Essays on Contemporary Psychometrics*. Springer. https://doi.org/10.1007/978-3-031-10370-4_16
Ulitzsch, E., Davier, M. von, & Pohl, S. (2019a). A hierarchical latent response model for inferences about examinee engagement in terms of guessing and item-level non-response. *British Journal of Mathematical and Statistical Psychology, 73*(S1), 83–112. https://doi.org/10.1111/bmsp.12188
Ulitzsch, E., Davier, M. von, & Pohl, S. (2019b). Using response times for joint modeling of response and omission behavior. *Multivariate Behavioral Research, 55*(3), 425–453. https://doi.org/10.1080/00273171.2019.1643699
Ulitzsch, E., Pohl, S., Khorramdel, L., Kroehne, U., & Davier, M. von. (2023). Using response times for joint modeling of careless responding and attentive response styles. *Journal of Educational and Behavioral Statistics*. https://doi.org/10.3102/10769986231173607
van der Linden, W. J. (2006). A lognormal model for response times on test items. *Journal of Educational and Behavioral Statistics, 31*(2), 181–204. https://doi.org/10.3102/10769986031002181
van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. *Psychometrika, 72*(3), 287–308. https://doi.org/10.1007/s11336-006-1478-z
van der Linden, W. J. (2024). On the choice of parameters for the lognormal model for response times: Commentary on Becker et al.(2013). *Journal of Educational Measurement, 61*(4), 624–633. https://doi.org/10.1111/jedm.12411
Waldmann, E., & Kneib, T. (2015). Bayesian bivariate quantile regression. *Statistical Modelling, 15*(4), 326–344. https://doi.org/10.1177/1471082X14551247
Wang, C., & Xu, G. (2015). A mixture hierarchical model for response times and response accuracy. *British Journal of Mathematical and Statistical Psychology, 68*(3), 456–477. https://doi.org/10.1111/bmsp.12054
Wang, C. et al. (2019). Modeling response time and responses in multidimensional health measurement. *Frontiers in Psychology, 10*, 51. https://doi.org/10.3389/fpsyg.2019.00051
Wang, S. et al. (2019). A joint modeling framework of responses and response times to assess learning outcomes. *Multivariate Behavioral Research, 55*(1), 49–68. https://doi.org/10.1080/00273171.2019.1607238
Wang, T., & Hanson, B. A. (2005). Development and calibration of an item response model that incorporates response time. *Applied Psychological Measurement, 29*(5), 323–339. https://doi.org/10.1177/0146621605275984
Wang, X., & Dey, D. K. (2010). Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption. *The Annals of Applied Statistics, 4*(4). https://doi.org/10.1214/10-aoas354
Wang, Y., Feng, X.-N., & Song, X.-Y. (2016). Bayesian quantile structural equation models. *Structural Equation Modeling: A Multidisciplinary Journal, 23*(2), 246–258. https://doi.org/10.1080/10705511.2015.1033057
Xue, M., & Chen, Y. (2023). A Stan tutorial on Bayesian IRTree models: Conventional models and explanatory extension. *Behavior Research Methods*. https://doi.org/10.3758/s13428-023-02121-5
Yamaguchi, K., & Zhang, J. (2023). Fully Gibbs sampling algorithms for Bayesian variable selection in latent regression models. *Journal of Educational Measurement, 60*(2), 202–234. https://doi.org/10.1111/jedm.12348
Yang, M., Luo, S., & DeSantis, S. M. (2019). Bayesian quantile regression joint models: Inference and dynamic predictions. *Statistical Methods in Medical Research, 28*(8), 2524–2537. https://doi.org/10.1177/0962280218784757
Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. *Statistics and Probability Letters, 54*, 437–447. https://doi.org/10.1016/S0167-7152(01)00124-9
Yu, K., Lu, Z., & Stander, J. (2003). Quantile regression: Applications and current research areas. *Journal of the Royal Statistical Society: Series D (The Statistician), 52*(3), 331–350. https://doi.org/10.1111/1467-9884.00363
Zhan, P., Jiao, H., & Liao, D. (2017). Cognitive diagnosis modelling incorporating item response times. *British Journal of Mathematical and Statistical Psychology, 71*(2), 262–286. https://doi.org/10.1111/bmsp.12114
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019). Using JAGS for Bayesian cognitive diagnosis modeling: A tutorial. *Journal of Educational and Behavioral Statistics, 44*(4), 473–503. https://doi.org/10.3102/1076998619826040
Zhan, P., Jiao, H., Man, K., Wang, W.-C., & He, K. (2021). Variable speed across dimensions of ability in the joint model for responses and response times. *Frontiers in Psychology, 12*, 469196. https://doi.org/10.3389/fpsyg.2021.469196
Zhang, Z., Zhang, J., Lu, J., & Tao, J. (2020). Bayesian estimation of the DINA model with Pólya-Gamma Gibbs sampling. *Frontiers in Psychology, 11*, 384. https://doi.org/10.3389/fpsyg.2020.00384
Zhu, H., Gao, W., & Zhang, X. (2021). Bayesian analysis of a quantile multilevel item response theory model. *Frontiers in Psychology, 11*. https://doi.org/10.3389/fpsyg.2020.607731
Štrumbelj, E., Bouchard-Côté, A., Corander, J., Gelman, A., Rue, H., Murray, L., Pesonen, H., Plummer, M., & Vehtari, A. (2023). Past, present, and future of software for Bayesian inference. *Accepted by Statistical Science*. |
Description: | 博士 國立政治大學 教育學系 109152512 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109152512 |
Data Type: | thesis |
Appears in Collections: | [教育學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
251201.pdf | 8194Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|