政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/155518
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114393/145446 (79%)
造访人次 : 53037505      在线人数 : 926
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/155518


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/155518


    题名: 比較交叉適配與p值合併對於特徵重要性檢定之影響
    Comparing Cross-Fitting and P-Value Combination Methods in Testing Feature Importances
    作者: 顏立平
    Yen, Li-Ping
    贡献者: 黃柏僩
    Huang, Po-Hsien
    顏立平
    Yen, Li-Ping
    关键词: 機器學習
    特徵重要性
    特徵重要性檢定
    machine learning
    feature importance
    feature importance tests
    日期: 2025
    上传时间: 2025-02-04 16:13:39 (UTC+8)
    摘要: 機器學習(machine learning,ML)算則建立之模型,長期以來被認為難以詮釋。而隨著可解釋機器學習(interpretable ML)之發展,研究者已可透過多種特徵重要性(feature importance)檢定,如殘差排序檢定(residual permutation test,RPT)、條件預測影響(conditional predictive impact,CPI)、 與 逐 一 變 數 排 除 (leave-one-covariate-out,LOCO),以了解哪些特徵具有統計顯著(statistically significant)之預測能力。傳統的特徵重要性檢定仰賴資料拆分(data splitting),即將資料拆為訓練集與測試集,前者用於訓練預測式,後者用於進行檢定。然而,資料拆分伴隨的樣本數減少意味著統計檢定力(statistical power)之喪失,且容許研究者從多次拆分挑選有利之分析結果,即所謂的資料窺探(data snooping),其會造成型一錯誤率(type I error)膨脹。為了解決單次資料拆分所帶來的問題,研究者可考慮透過重複資料拆分獲得多組分析結果,再使用 p 值合併或交叉適配(cross-fit)將多組結果進行整合。本研究試圖透過模擬實驗來評估多種 p 值合併法和有無交叉適配之策略組合,於 RPT、CPI 與 LOCO 之實徵表現。模擬結果顯示資料窺探的確會導致型一錯誤率膨脹,而所有的組合皆可將型一錯誤率控制在顯著水準(α = 0.05)以下,唯一的例外為 RPT 搭配 Cauchy 法會造成型一錯誤率膨脹。在檢定力方面,使用Bonferroni 法搭配交叉適配,以及單獨使用 Cauchy 法兩種策略組合展現相對較佳的檢定力,且優於單次資料拆分,而其餘的 p 值合併法儘管可控制型一錯誤率,卻展現低於單次資料拆分之檢定力。
    Machine learning (ML) models have long been considered difficult to interpret. However, with the development of interpretable machine learning (interpretable ML), researchers can now use various feature importance tests, such as the residual permutation test (RPT), conditional predictive impact (CPI), and leave-one-covariate-out (LOCO), to identify which features have statistically significant predictive power. Traditional feature importance tests rely on data splitting, dividing the dataset into a training set for model fitting and a test set for statistical test. This approach reduces sample size, resulting in a loss of statistical power, and allows researchers to engage in data snooping by selecting favorable analysis results from multiple splits. To address the issues caused by single data splitting, researchers may consider repeated data splitting to obtain multiple analysis results, which can then be combined using p-value aggregation methods or cross-fitting. This study aims to evaluate the empirical performance of various combinations of p-value aggregation methods and cross-fitting strategies through simulation experiments applied to RPT, CPI, and LOCO. Simulation results reveal that data snooping inflates type I error rates, whereas almost all strategy combinations effectively control type I errors, except for RPT paired with the Cauchy method. In terms of statistical power, the combination of Bonferroni correction with cross-fitting and the standalone use of the Cauchy method exhibit relatively better power compared to single data splitting. Other p-value aggregation methods, while controlling type I errors, demonstrate lower statistical power than single data splitting.
    參考文獻: Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression
    trees. Taylor & Francis. https://doi.org/10.1201/9781315139470
    Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The An-
    nals of Statistics, 24(6), 2350–2383. https://doi.org/10.1214/aos/1032181158
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.
    1023/A:1010933404324
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984, October). Classification
    and regression trees. Routledge. https://doi.org/10.1201/9781315139470
    Candès, E., Fan, Y., Janson, L., & Lv, J. (2018). Panning for gold: ‘model-x’ knockoffs
    for high dimensional controlled variable selection. Journal of the Royal Statistical
    Society Series B: Statistical Methodology, 80(3), 551–577. https : / / doi . org / 10 .
    1111/rssb.12265
    Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of
    the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
    Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
    Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., &
    Robins, J. (2018). Double/debiased machine learning for treatment and structural
    parameters. The Econometrics Journal, 21(1), C1–C68. https://doi.org/10.1111/
    ectj.12097
    Chilver, M. R., Champaigne-Klassen, E., Schofield, P. R., Williams, L. M., & Gatt, J. M.
    (2023). Predicting wellbeing over one year using sociodemographic factors, per-
    sonality, health behaviours, cognition, and life events. Scientific Reports, 13(1),
    5565. https://doi.org/10.1038/s41598-023-32588-3
    Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Sci-
    ence, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
    Colquhoun, D. (2017). The reproducibility of research and the misinterpretation of <i>p</i>-
    values. Royal Society Open Science, 4(12), 171085. https://doi.org/10.1098/rsos.
    171085
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–
    297. https://doi.org/10.1007/BF00994018
    Couronné, R., Probst, P., & Boulesteix, A.-L. (2018). Random forest versus logistic re-
    gression: A large-scale benchmark experiment. BMC Bioinformatics, 19(1), 270.
    https://doi.org/10.1186/s12859-018-2264-5
    Covert, I. C., Lundberg, S., & Lee, S.-I. (2021). Explaining by removing: A unified frame-
    work for model explanation. J. Mach. Learn. Res., 22(1).
    Dai, B., Shen, X., & Pan, W. (2024). Significance tests of feature relevance for a black-
    box learner. IEEE Transactions on Neural Networks and Learning Systems, 35(2),
    1898–1911. https://doi.org/10.1109/tnnls.2022.3185742
    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
    bidirectional transformers for language understanding. https://arxiv.org/abs/1810.
    04805
    Dimson, E., & Marsh, P. (1990). Volatility forecasting without data-snooping. Journal of
    Banking & Finance, 14(2), 399–421. https://doi.org/10.1198/jasa.2009.tm08647
    Fisher, R. A. (1928). Statistical methods for research workers. Oliver; Boyd.
    Fix, E. (1985). Discriminatory analysis: Nonparametric discrimination, consistency prop-
    erties (Vol. 1). USAF school of Aviation Medicine.
    Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In-
    ternational Conference on Machine Learning. https : / / api . semanticscholar . org /
    CorpusID:1836349
    Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance
    dilemma. Neural Computation, 4(1), 1–58. https://doi.org/10.1162/neco.1992.4.
    1.1
    Gonzalez, O. (2021). Psychometric and machine learning approaches for diagnostic as-
    sessment and tests of individual classification. Psychological Methods, 26(2), 236–
    254. https://doi.org/10.1037/met0000317
    Hastie, T. (2009). The elements of statistical learning: Data mining, inference, and pre-
    diction.
    Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent
    and consequences of p-hacking in science. PLOS Biology, 13(3), 1–15. https://doi.
    org/10.1371/journal.pbio.1002106
    Hommel, G. (1983). Tests of the overall hypothesis for arbitrary dependence structures.
    Biometrical Journal, 25(5), 423–430. https://doi.org/10.1002/bimj.19830250502
    Huang, P. H. (2025a). Residual permutation tests for feature importance in machine learn-
    ing. [unpublished manuscript].
    Huang, P. H. (2025b). Significance tests for feature importance in machine learning. [un-
    published manuscript].
    Jocher, G., Chaurasia, A., & Qiu, J. (2023, January). Ultralytics YOLO (Version 8.0.0).
    https://github.com/ultralytics/ultralytics
    Joel, S., Eastwick, P. W., Allison, C. J., Arriaga, X. B., Baker, Z. G., Bar-Kalifa, E., Berg-
    eron, S., Birnbaum, G. E., Brock, R. L., Brumbaugh, C. C., Carmichael, C. L.,
    Chen, S., Clarke, J., Cobb, R. J., Coolsen, M. K., Davis, J., de Jong, D. C., De-
    brot, A., DeHaas, E. C., … Wolf, S. (2020). Machine learning uncovers the most
    robust self-report predictors of relationship quality across 43 longitudinal couples
    studies. Proceedings of the National Academy of Sciences, 117(32), 19061–19071.
    https://doi.org/10.1073/pnas.1917036117
    Kai-Quan Shen, Chong-Jin Ong, Xiao-Ping Li, Zheng Hui, & Wilder-Smith, E. (2007).
    A feature selection method for multilevel mental fatigue eeg classification. IEEE
    Transactions on Biomedical Engineering, 54(7), 1231–1237. https://doi.org/10.
    1109/TBME.2007.890733
    Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-
    free predictive inference for regression. Journal of the American Statistical Asso-
    ciation, 113(523), 1094–1111. https://doi.org/10.1080/01621459.2017.1307116
    Liu, Y., & Xie, J. (2020). Cauchy combination test: A powerful test with analytic p-value
    calculation under arbitrary dependency structures. Journal of the American Statis-
    tical Association, 115(529), 393–402. https://doi.org/10.1080/01621459.2018.
    1554485
    Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions,
    4768–4777.
    Mattner, L. (2011). Combining individually valid and conditionally i.i.d. p-variables.
    Mi, X., Zou, B., Zou, F., & Hu, J. (2021). Permutation-based identification of important
    biomarkers for complex diseases via machine learning models. Nature Communi-
    cations, 12(1), 3008. https://doi.org/10.1038/s41467-021-22756-2
    Moran, M. (2003). Arguments for rejecting the sequential bonferroni in ecological studies.
    Oikos, 100(2), 403–405. https://doi.org/10.1034/j.1600-0706.2003.12010.x
    Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Per-
    cie du Sert, N., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J., & Ioannidis,
    J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour,
    1(1), 0021. https://doi.org/10.1038/s41562-016-0021
    Nicolai Meinshausen, L. M., & Bühlmann, P. (2009). P-values for high-dimensional re-
    gression. Journal of the American Statistical Association, 104(488), 1671–1681.
    https://doi.org/10.1198/jasa.2009.tm08647
    O’Gorman, T. W. (2005). The performance of randomization tests that use permutations
    of independent variables. Communications in Statistics - Simulation and Compu-
    tation, 34(4), 895–908. https://doi.org/10.1080/03610910500308230
    Oh, J., Laubach, M., & Luczak, A. (2003). Estimating neuronal variable importance with
    random forest. 2003 IEEE 29th Annual Proceedings of Bioengineering Confer-
    ence, 33–34. https://doi.org/10.1109/NEBC.2003.1215978
    Ojala, M., & Garriga, G. C. (2009). Permutation tests for studying classifier performance.
    2009 Ninth IEEE International Conference on Data Mining, 908–913. https://doi.
    org/10.1109/ICDM.2009.108
    OpenAI. (2024). Chatgpt (december 23 version) [large language model] [Accessed: De-
    cember 23, 2024]. https://chat.openai.com
    Paschali, M., Zhao, Q., Adeli, E., & Pohl, K. M. (2022, June). Bridging the gap between
    deep learning and hypothesis-driven analysis via permutation testing. Springer Na-
    ture Switzerland. https://link.springer.com/10.1007/978-3-031-16919-9_2
    Pearson, K. (1933). On a method of determining whether a sample of size n supposed to
    have been drawn from a parent population having a known probability integral
    has probably been drawn at random. Biometrika, 25, 379–410. https://doi.org/10.
    1093/biomet/25.3-4.379
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
    M., Prettenhofer, P., Weiss, R., Dubourg, V., 等. (2011). Scikit-learn: Machine
    learning in python. Journal of machine learning research, 12(10), 2825–2830.
    Pelt, D. H. M., Habets, P. C., Vinkers, C. H., Ligthart, L., van Beijsterveldt, C. E. M.,
    Pool, R., & Bartels, M. (2024). Building machine learning prediction models for
    well-being using predictors from the exposome and genome in a population cohort.
    Nature Mental Health, 2(10), 1217–1230. https://doi.org/10.1038/s44220-024-
    00294-2
    Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022).
    Robust speech recognition via large-scale weak supervision. https://arxiv.org/abs/
    2212.04356
    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
    organization in the brain. Psychological review, 65 6, 386–408. https://api.semanticscholar.
    org/CorpusID:12781225
    Rüger, B. (1978). Das maximale signifikanzniveau des tests:“lehne h o ab, wenn k unter
    n gegebenen tests zur ablehnung führen”
    . Metrika, 25, 171–178.
    Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2013). P-curve: A key to the file-drawer.
    J Exp Psychol Gen, 143(2), 534–547.
    Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional
    variable importance for random forests. BMC Bioinformatics, 9(1), 307. https :
    //doi.org/10.1186/1471-2105-9-307
    Strube, M. J. (2006). Snoop: A program for demonstrating the consequences of premature
    and repeated null hypothesis testing. Behavior research methods, 38(1), 24–27.
    Tansey, W., Veitch, V., Zhang, H., Rabadan, R., & Blei, D. M. (2022). The holdout ran-
    domization test for feature selection in black box models. Journal of Compu-
    tational and Graphical Statistics, 31(1), 151–162. https : / / doi . org / 10 . 1080 /
    10618600.2021.1923520
    Tippett, L. H. C., 等. (1931). The methods of statistics. The Methods of Statistics.
    Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
    Vovk, V., & Wang, R. (2020). Combining p-values via averaging. Biometrika, 107(4),
    791–808. https://doi.org/10.1093/biomet/asaa027
    Watson, D. S., & Wright, M. N. (2021). Testing conditional independence in supervised
    learning algorithms. Machine Learning, 110(8), 2107–2129. https://doi.org/10.
    1007/s10994-021-06030-6
    White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097–1126.
    Retrieved December 29, 2024, from http://www.jstor.org/stable/2999444
    Williamson, B. D., Gilbert, P. B., Simon, N. R., & Carone, M. (2023). A general frame-
    work for inference on algorithm-agnostic variable importance. Journal of the Amer-
    ican Statistical Association, 118(543), 1645–1658. https : / / doi . org / 10 . 1080 /
    01621459.2021.2003200
    Xgboost python api reference. (n.d.). Retrieved January 13, 2025, from https://xgboost.
    readthedocs.io/en/stable/python/python_api.html
    描述: 碩士
    國立政治大學
    心理學系
    111752001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111752001
    数据类型: thesis
    显示于类别:[心理學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    200101.pdf18901KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈