Reference: | [1] 行動寬頻服務用戶數統計https://www.ncc.gov.tw/chinese/gradation.aspx?site_content_sn=3152
[2] 內政部人口相關統計(人口結構)
https://www.moi.gov.tw/cl.aspx?n=3922
[3] Guo, Y., Yu, L., Wang, Q., Ji, T., Fang, Y., Wei-Kocsis, J., & Li, P. (2021). Weak Signal Detection in 5G+ Systems: A Distributed Deep Learning Framework. Proceedings of the Twenty-Second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, 201–210. https://doi.org/10.1145/3466772.3467049
[4] Cheng, T., Liu, C., & Ding, W.(2019). Weak Signal Detection Based on Deep Learning. Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing, 114–118. https://doi.org/10.1145/3330393.3330409
[5] Al-Thaedan, A., Shakir, Z., Mjhool, A. Y., Alsabah, R., Al-Sabbagh, A., Nembhard, F., & Salah, M. (2024). A machine learning framework for predicting downlink throughput in 4G-LTE/5G cellular networks. International Journal of Information Technology, 16(2), 651–657. https://doi.org/10.1007/s41870-023-01678-w
[6] Hastie, T., Tibshirani, R., & Friedman, J.(2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. http://doi.org/10.1007/978-0-387-84858-7
[7] Altman, N. S.(1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3), 175-185. http://doi.org/10.1080/00031305.1992.10475879
[8] Breiman, L., Friedman, J., Olshen, R.A., & Stone, C.J.(1984). Classification and Regression Trees (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315139470
[9] Breiman, L.(2001). Random Forests. Machine Learning 45, 5–32. https://doi.org/10.1023/A:1010933404324
[10] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J.(2023). An introduction to statistical learning : with applications in Python. Springer International Publishing. https://doi.org/10.1007/978-3-031-38747-0
[11] Liu, K., Li, A., Lin, X., Mao, Z., & Zhang, W.(2024). Empirical study on the performance of various machine learning models in predicting stock price movements as a binary classification task. Applied and Computational Engineering. 55. 129-144. https://doi.org/10.54254/2755-2721/55/20241403
[12] Hammood, L., Doğru, İ., & Kılıç, K.(2023). Machine Learning-Based Adaptive Genetic Algorithm for Android Malware Detection in Auto-Driving Vehicles. Applied Sciences. 13. 5403. https://doi.org/10.3390/app13095403
[13] Hardman, M. F., Homkrajae, A., Eaton-Magaña, S., Breeding, C. M., Palke, A. C., & Sun, Z. (2024). Classification of Gem Materials Using Machine Learning. Gems & Gemology, 60(3), 306–329. https://doi.org/10.5741/GEMS.60.3.306
[14] Kartikasari, P., Utami, I. T., Suparti, S., & Rahman, S. D. F.(2024). Breast Cancer Classification Using Support Vector Machine(SVM) and Light Gradient Boosting Machine(LightGBM) Models. Media Statistika, 16(2), 182–193. https://doi.org/10.14710/medstat.16.2.182-193
[15] J M, S. L., & P, S.(2024). Unveiling the potential of machine learning approaches in predicting the emergence of stroke at its onset: A predicting framework. Scientific Reports, 14, 20053. https://doi.org/10.1038/s41598-024-70354-1
[16] Rajayyan, S., & Mustafa, S. M. M.(2023). Comparative Analysis of Performance Metrics for Machine Learning Classifiers with a Focus on Alzheimer’s Disease Data. Acta Informatica Pragensia, 12(1), 54–70. https://doi.org/10.18267/j.aip.198
[17] Kumar, D., & Ahamad, F.(2024). Opinion Extraction using Hybrid Learning Algorithm with Feature Set Optimization Approach. Journal of Electrical Systems. 20. 1266-1276. https://doi.org/10.52783/jes.3694
[18] Kumar, S., Choudhary, M.K. & Thomas, T.(2024) A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin, India. Scientific Reports 14, 26263. https://doi.org/10.1038/s41598-024-77655-5
[19] Liang, W., Luo, S., Zhao, G., & Wu, H.(2020). Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms. Mathematics, 8(5), 765. https://doi.org/10.3390/math8050765
[20] Patnaik, A., Anagnostou, D. E., Mishra, R., ChristodoulouCG., & Lyke, J. C.(2006). Applications of neural networks in wireless communications. IEEE Antennas and Propagation Magazine, 46(3), 130–137. https://doi.org/10.1109/MAP.2004.1374125
[21] RTR 欄位定義
https://www.netztest.at/en/OpenDataSpecification.html#response-2
[22] Pedregosa, F., Varoquaux, G., Gramfort, A., et al.(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
[23] RTR-NetzTest https://www.netztest.at/en/Opendata
[24] Ookla(Speedtest by Ookla Global Fixed and Mobile Network Performance Maps)
https://registry.opendata.aws/speedtest-global-performance/
[25] Powers, D., & Ailab.(2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies. 2(1). https://doi.org/10.9735/2229-3981
[26] Campello R., Moulavi D., Zimek A., & Sander J.(2015). Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 10, 1, Article 5, 51 pages. https://doi.org/10.1145/2733381
[27] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Knowledge Discovery and Data Mining, 226–231. https://dl.acm.org/doi/10.5555/3001460.3001507
[28] Bishop, C. (2006). Pattern Recognition and Machine Learning. Journal of Electronic Imaging. 16(4):140-155. https://doi.org/10.1117/1.2819119 |