English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114393/145446 (79%)
Visitors : 53042271      Online Users : 861
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/155501


    Title: 利用大型語言模型分析公司重大訊息並生成當沖交易策略
    Analyzing Material Information with Large Language Models for Generating Day Trading Signals
    Authors: 柯昱均
    Ke, Yu-Chun
    Contributors: 黃泓智
    Huang, Hong-Chih
    柯昱均
    Ke, Yu-Chun
    Keywords: 大型語言模型
    生成式人工智慧
    當沖交易策略
    重大訊息分析
    股價趨勢預測
    事件研究法
    機器學習
    集成學習
    Large language models
    Generative AI
    Day trading strategies
    Material information analysis
    Stock price prediction
    Event study methodology
    Machine learning
    Ensemble learning
    Date: 2024
    Issue Date: 2025-02-04 16:03:53 (UTC+8)
    Abstract: 本研究探討生成式人工智慧(Generative AI)中的大型語言模型(LLMs)在金融市場的應用,特別是利用其分析上市公司重大訊息並生成當沖交易策略。雖然LLMs在多領域已有顯著進展,金融應用尚屬初步探索階段。本研究旨在驗證ChatGPT是否具備分析重大訊息以推斷股價趨勢的能力,並評估其交易策略效果。資料範圍聚焦於臺灣50指數成分股的重大訊息及新聞資料,並利用事件研究法進行異常報酬檢定。此外,研究結合技術指標與機器學習模型,期望透過多種訊號的整合,提升交易策略的準確性與表現。
    研究結果顯示,大型語言模型在做空和多空策略中表現出顯著優勢,能有效捕捉市場中的負面訊息,尤其在市場情緒不穩定或趨勢反轉時具有較高的預測靈敏度。然而,做多策略的表現相對不佳,主要因為正面訊息的來源多樣且可能存在資訊洩漏,使得依賴重大訊息的做多策略風險較高。對於漲跌二分類任務,模型表現較為穩定,能清晰區分市場趨勢;但在漲跌三分類任務中,模型準確度有所下降,因為細緻的分類使得邊界情況下的預測更加困難。在集成學習方面,投票法雖能減少單一模型偏差帶來的風險,但也使的模型變的較為平庸。相對地,堆疊法通過結合多種機器學習模型的判斷,有效改善了做多策略的表現,並在做空及多空策略中展現優異效果。綜合來看,大型語言模型在多空策略及漲跌二分類任務中展現出應用潛力,並顯示結合歷史股價資訊的機器學習模型能夠有效提升交易決策品質。
    This study explores the application of large language models (LLMs) in generative artificial intelligence (Generative AI) for financial markets, focusing on analyzing major corporate announcements and generating day trading strategies. Although LLMs have advanced significantly in various fields, their financial applications remain in the early stages. The research assesses whether ChatGPT can forecast stock price trends from material information and evaluates the effectiveness of these trading strategies. The study examines announcements and news related to Taiwan 50 Index constituents, applying event study methodology to detect abnormal returns. It also integrates technical indicators and machine learning models to enhance strategy accuracy.
    The results show that LLMs excel in short-selling and mixed strategies, effectively capturing negative market signals, especially during periods of instability or trend reversals. Long strategies perform less well due to varied sources of positive information and potential information leakage, increasing risk. The model is consistent in binary classification but less accurate in ternary classification due to increased complexity. While voting methods in ensemble learning reduce bias, they yield mediocre results. Stacking methods, combining multiple machine learning models, improve long strategy performance and excel in short-selling and mixed strategies. Overall, LLMs show potential in mixed strategies and binary classification, and integrating historical stock price information with machine learning models effectively enhances trading decision quality.
    Reference: 李在僑、& 趙永祥。(2012)。現金減資宣告效果探討-以事件研究法為例。育達科大學報,(30),103-131。
    邱垂昌。(2006)。宣告及實際買回庫藏股與異常報酬-管理者之策略性應用。會計與公司治理,3(2),17-35。
    陳尚武、洪雅薰、梁嘉真、廖曉翎、劉品妤、李書瑢、& 劉涵琳。(2021)。大型海外企業併購對集團企業股價之影響-台灣鴻海併購日本夏普之實證。東亞論壇,(513),1-13。
    Akbar, M., & Baig, H. H. (2010). Reaction of stock prices to dividend announcements and market efficiency in Pakistan. Lahore Journal of Economics, 15, 103-125.
    Caron, M., & Müller, O. (2020, December). Hardening soft information: A transformer-based approach to forecasting stock return volatility. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 4383-4391). IEEE.
    Cho, S. (2024, March 14). Can ChatGPT generate stock tickers to buy and sell for day trading? Available at SSRN: https://ssrn.com/abstract=4759311 or http://dx.doi.org/10.2139/ssrn.4759311
    Huang, H., & Zhao, T. (2021, April). Stock market prediction by daily news via natural language processing and machine learning. In 2021 International Conference on Computer, Blockchain and Financial Development (CBFD) (pp. 190-196). IEEE.
    Huang, S., & Liu, S. (2019). Machine learning on stock price movement forecast: The sample of the Taiwan stock exchange. International Journal of Economics and Financial Issues, 9(2), 189.
    Larson, I. J. (2024). AI-nvesting: An empirical analysis with sector categorization and prompt complexity considerations assessing the predictive power of ChatGPT in stock market forecasting. CMC Senior Theses, 3491. Retrieved from https://scholarship.claremont.edu/cmc_theses/3491
    Lopez-Lira, A., & Tang, Y. (2023). Can ChatGPT forecast stock price movements? Return predictability and large language models. arXiv preprint arXiv:2304.07619.
    Lv, D., Yuan, S., Li, M., & Xiang, Y. (2019). An empirical study of machine learning algorithms for stock daily trading strategy. Mathematical Problems in Engineering, 2019(1), 7816154.
    MacKinlay, A. C. (1997). Event studies in economics and finance. Journal of Economic Literature, 35(1), 13-39.
    Ma, F., Lyu, Z., & Li, H. (2024). Can ChatGPT predict Chinese equity premiums? Finance Research Letters, 105631.
    Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data, 7, 20. https://doi.org/10.1186/s40537-020-00299-5
    Shaheen, I. (2006). Stock market reaction to acquisition announcements using an event study approach (Undergraduate honors thesis, Franklin & Marshall College). Franklin & Marshall College Digital Repository. Retrieved from https://digital.fandm.edu
    Vermaelen, T. (1981). Common stock repurchases and market signalling: An empirical study. Journal of Financial Economics, 9(2), 139-183.
    Xie, Q., Han, W., Lai, Y., Peng, M., & Huang, J. (2023). The wall street neophyte: A zero-shot analysis of chatgpt over multimodal stock movement prediction challenges. arXiv preprint arXiv:2304.05351.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    111358030
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111358030
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    803001.pdf5255KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback