政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/155078
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113980/145005 (79%)
造訪人次 : 52026155      線上人數 : 348
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/155078
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/155078


    題名: The Impact of Parroting Mode on Cross-Lingual Speaker Recognition
    作者: 廖文宏
    Liao, Wen-Hung;Ou, Yen-Chun;Chen, Po-Han;Wu, Yi-Chieh
    貢獻者: 資訊系
    關鍵詞: text-independent speaker recognition;cross-lingual dataset;deep-learning;audio embedding;parroting mode
    日期: 2023-12
    上傳時間: 2025-01-07 09:36:43 (UTC+8)
    摘要: People use multiple languages in their daily lives across regions worldwide, which motivated us to investigate cross-lingual speaker recognition. In this work, we propose to collect recordings of Mandarin and Spanish, namely the Mandarin-Spanish-Speech Dataset (MSSD-40), to analyze the performance of various audio embeddings for cross-lingual speaker recognition tasks. All participants are fluent in Mandarin, but none of the participants have prior knowledge of the Spanish language. As such, they have been advised to adopt a parroting mode of Spanish speech production, wherein they simply repeat the sounds emanating from the loudspeaker. Using this approach, variations resulting from individual differences in language fluency can be reduced, enabling us to focus on the anatomical aspects of the speech production mechanism.Embeddings extracted from models pre-trained with a large number of audio segments have become effective solutions for coping with audio analysis tasks using small datasets. Preliminary experimental results using two collected multi-lingual datasets indicate that both embedding methods and the language employed will affect the robustness of the speaker recognition task. Precisely, stable performance is observed when familiar languages are used. BEATs embedding generates the best outcome in all languages when no fine-tuning is exercised.
    關聯: Proceedings of the 25th International Sympisium on Multimedia, IEEE Technical Committee on Multimedia (TCMC), pp.193-197
    資料類型: conference
    DOI 連結: https://doi.org/10.1109/ISM59092.2023.00035
    DOI: 10.1109/ISM59092.2023.00035
    顯示於類別:[資訊科學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋