English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52332808      Online Users : 97
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/154573


    Title: 大數據時代下的公共政策-網路輿情分析方法之應用與發展
    Public Policy from the Big Data Era - The Application and Development of Internet Public Opinion Analysis
    Authors: 郭毓倫
    Kuo, Yulun Kyle
    Contributors: 蕭乃沂
    Hsiao, Nai-Yi
    郭毓倫
    Kuo, Yulun Kyle
    Keywords: 網路輿情分析
    公共政策分析
    自然語言處理
    智慧政府
    投入產出風險評估框架
    Internet Public Opinion Analysis (IPOA)
    Public policy analysis
    Natural Language Processing (NLP)
    Smart Government
    Input-Output Risk Assessment (IO-RA) Framework
    Date: 2023
    Issue Date: 2024-12-02 11:23:04 (UTC+8)
    Abstract: 在大數據時代下以實證為基礎的循證研究快速推展,並在各領域間發揮重要影響力,公共政策領域亦未置身事外。尤其在行動網路及智慧型手機日漸普及的當下,建構出別於傳統政策場域的新形態公共意見交換管道。本研究以網路輿情分析方法在公共政策制定過程的發展與應用為例,梳理既有文獻脈絡,回顧政策階段論與民意調查的既有研究,結合網路輿情的既有文獻,探知協作機制下多方利害關係人交互觀點之缺口,並以研究者多年參與觀察個案經驗與多方利害關係人之深度訪談成果加以補充,整理網路輿情方法特性具有(1)運用科技輔助質性探索、(2)突破時間與來源限制與(3)運用自動化技術降低研究成本之特性,並與政策階段交互綜整出應用情境。同時,參照研究成果與過往理論,本研究觀察到傳統理論在個案中產生典範移轉的現象:(1)議程設定理論中大眾媒體的再定義、(2)政策階段論中的邊界模糊現象、(3)新興管道強化審議式民主應用、(4)數位治理下的職能重新評估修正與(5)電話民調方法發展歷程借鏡。最終,本研究整理網路輿情分析流程以作為多方利害關係人共同協作之基礎,並依據各方角色差異分別給予實務建議,為傳統公共政策分析技術注入循證導向的新活血。
    Reference: 中文部分
    丘昌泰、朱志宏(1995)。政策規劃。國立空中大學,臺北市。
    行政院國家發展委員會(2018)。 2018年持有手機民眾數位機會調查報告。行政院國家發展委員會,臺北市。
    行政院國家發展委員會(2021)。數位時代政府政策溝通與危機溝通作業參考手冊。行政院國家發展委員會,臺北市。
    余政達、楊明浩、李英裕、蔡宏達(2006)。地方再生能源之潛力與經濟評估。環境保護,29(1),11-28。
    吳定(2017)。公共政策。臺北市:五南圖書出版股份有限公司。
    呂有為(2019)。探討社群媒體直播在政策溝通中的角色-以行政院農業委員會為例。政治大學傳播學院碩士論文,未出版,臺北。
    呂建億(2015)。民眾對網路輿情分析方法之信任研究-民意調查與網路輿情分析的比較。國立政治大學公共行政研究所碩士論文,未出版,臺北。
    宋映辰(2020)。行政機關利用社群媒體進行議題設定與政策溝通之研究:以海巡署首長臉書粉專為例。國立臺灣大學政治學研究所碩士論文,未出版,臺北。
    李仲彬(2011)。「信任」在電子治理中所扮演的角色:以文獻檢閱為基礎的初探性分析。公共行政學報,39,105-147。
    李昱穎(2019)。新聞輿情分析在臺灣股票市場之應用:文字轉向量與動能策略。國立政治大學金融學系研究所碩士論文,未出版,臺北。
    杜文苓(2019)。核廢何從:遷不出的蘭嶼惡靈。面對風險社會的台灣:議題與策略,臺北市:巨流圖書, pp.159-188
    林文涵(2017)。網路輿情分析在公共政策的應用與影響。國立政治大學公共行政研究所碩士論文,未出版,臺北。
    林水波(1999)。公共政策論衡。臺北:智勝文化事業有限公司。
    林水波、張世賢。(2006)。公共政策。臺北:五南圖書出版股份有限公司。
    林宇玲(2014)。網路與公共領域:從審議模式轉向多元公眾模式。新聞學研究, (118), 55-85.
    林彥廷(2016)。太陽花學運與政治效能感之初探: 以中部地區大學生為例。東海大學政治學系碩士論文,未出版,臺中。
    施能傑 (2010)。 職能理論對國家考試制度設計的啟示。國家菁英季刊6(3),17-35,國家菁英季刊社,臺北。
    柯三吉(1998)。公共政策:理論方法與臺灣經驗。臺北:時英出版社。
    洪永泰(2006)。〈民意調查的挑戰:瞎子摸的是什麼象〉。研考雙月刊,30(4): 39-48。
    洪永泰、洪百薰、林宇璇、呂孟穎、許勝懋、吳淑惠、卓仲彥、徐書儀(2014)。手機使用對臺灣地區電話調查涵蓋率之影響評估。調查研究:方法與應用,31: 7-30。
    洪綾君、謝雨豆(2019)。太陽花學運中社群網站關鍵議題探索。電子商務研究,17(2),85-111。
    馬國勳(2020)。會上網,就等於善用科技?「量」與「質」的數位落差,關於數位文化資本。2021年1月8日,取自:https://npost.tw/archives/58923。
    國立政治大學民主創新治理中心(2020)。核廢社會溝通規劃案期中報告。台電公司委託研究案(編號:108A108083),未出版。
    張鐙文、吳佩靜(2021)。實踐公部門線上協力式政策參與之研究:以機關回應態樣與決策行為核心的檢視。公共行政學報,(60),47-96。
    張鐙文、莊文忠(2012)。數位時代媒介使用行為與政治知識成因之析探: 網路與非網路使用族群之比較分析。競爭力評論,(15),65-90。
    張鐙文、黃東益、洪永泰(2017)。住宅電話與手機雙底冊調查的組合估計:以2016總統選舉預測為例。選舉研究,24(2),65-95。
    莊文忠(2018)。循證的政策制定與資料分析:挑戰與前瞻。文官制度季刊,10(2),1-20。
    莊伯仲、羅彥傑、黃瀚鋒(2014)。政府施政過程中公民新聞角色之研究。行政院國家發展委員會專題研究計畫(編號:NDC-DSD-102-002)。
    陳向明(2004)。社會科學質的研究。臺北:五南圖書出版股份有限公司。
    陳芙萱(2020)。從去中心化網路看新科技對公共行政發展的影響。公共行政學報,(59),121-133.
    陳俊明(2014)。數位國家治理:國情分析架構與方法。行政院國家發展委員會專題研究計畫(編號:RDEC-MIS-102-001)。
    陳羿妏(2019)。2016 美國總統大選中的政治極化與輿情分析:以臉書資料為例。國立臺灣大學經濟學研究所碩士論文,未出版,臺北。
    陳敦源、黃東益、李仲彬、蕭乃沂、林子倫 (2008)。資訊通訊科技下的審議式民主:線上與實體公民會議比較分析。行政暨政策學報(46),49-105。
    陳敦源、蕭乃沂(2017)。Web 2.0 時代的民意探勘:政府部門網路輿情分析的概念與實務。臺北:行政院國家發展委員會。
    陳敦源、蕭乃沂、廖洲棚、陳恭(2016)。政府巨量資料分析與政策端應用效能提升之研析。行政院國家發展委員會委託研析報告(編號:NDC104-035-003),未出版。
    陳雅玫(2016)。學生臉書使用與政治參與: 以太陽花學運為例。中國行政評論,22(4),61-91。
    陶治中、陳亭愷(2016)。社群運算應用於網路輿情情感傾向分析之研究-以實施國道計程電子收費政策為例。運輸學刊,28(3),295-334.
    傅景華(2012)。從網絡輿情到審議式民主,香港電台。2023年3月30日,取自:https://app3.rthk.hk/mediadigest/media/pdf/pdf_1403593519.pdf。
    曾憲立、洪永泰、朱斌妤、黃東益、謝翠娟 (2018)。多元民意調查方法的比較研究。調查研究-方法與應用(41),87-117.
    項靖、羅晉、許雲翔、楊東謀(2016)。網路社群媒體時代政府公共諮詢與政策行銷之規劃。行政院國家發展委員會委託研析報告(編號:NDC104-035-002),未出版。
    黃東益(2020)。核電廠除役利害關係群體意見探詢與溝通機制之設計及執行-III。科技部合作研究計畫(編號:PF10902-0150),未出版。
    黃若深(2017)。公民新聞與民主之關係探討:以太陽花運動為例。國立臺灣大學政治學研究所碩士論文,未出版,臺北。
    黃華興(2019)。檢測房價預期對房屋市場之影響-利用文字探勘技巧分析網路論壇民意。臺灣大學經濟學研究所碩士論文,未出版,臺北。
    黃筠婷(2019)。以網路輿情探討汽車銷售的動態競爭關係。政治大學科技管理與智慧財產研究所碩士論文,未出版,臺北。
    意藍資訊(2023)。網路聲量如何應用在政府與公共議題觀測?。2023年4月27日,取自:https://www.opview.com.tw/public-issues-application 。
    楊意菁(2008)。網路民意的公共意涵:公衆、公共領域與溝通審議。中華傳播學刊, (14),115-167.
    廖洲棚、曾憲立、李天申(2019)。循證式數位治理以及溝通策略研析。行政院國家發展委員會專題研究計畫(編號:NDC-MIS-107-002)。
    廖興中(2019)。數位國情架構精進調查與政府數位成熟度評估。行政院國家發展委員會專題研究計畫(編號:NDC-MIS-108-001)。
    廖興中(2019)。數位國情總綱調查(6)─區域數位分類研究報告。行政院國家發展委員會專題研究計畫(編號:NDC-MIS-107-001)。
    廖興中、賴怡樺(2021)。公務人員數位治理職能培訓之研究—以公務人員保障暨培訓委員會法定訓練對象為例。公務人員保障暨培訓委員會,臺北市。
    熊澄宇(2003)。傳播學十大經典解讀。清華大學學報,18(5), 23-37。
    蔡明順(2023)。產業已動,政府治理 AI 化也刻不容緩,關鍵評論網。2023年3月30日,取自:https://www.inside.com.tw/article/29014-aia-tsai-ai-dx。
    蕭乃沂(2018)。臺灣經驗2.0:智能社會與永續發展的參與式智慧治理。教育部委託報告(編號:107H121-07),未出版。
    蕭乃沂、朱斌妤(2022)。數位發展與文官制度調適: 以資料治理為例。文官制度,14(1),1-24。
    蕭乃沂、李蔡彥(2018)。數位治理人力資本與職能策略研析調查。行政院國家發展委員會專題研究計畫(編號:NDC-MIS-106-002)。
    外文部分
    Allport, F. H. (1937). Toward a science of public opinion. Public opinion quarterly, 1(1), 7-23.
    Alves, F., Caeiro, S., Azeiteiro, U. M., De Kraker, J., Kuijs, S., Cörvers, R., & Offermans, A. (2014). Internet public opinion on climate change: a world views analysis of online reader comments. International Journal of Climate Change Strategies and Management.
    Aruoba, S. B., & Drechsel, T. (2022). Identifying monetary policy shocks: A natural language approach. USA:University of Maryland
    Asher, Herb. (2017). Polling and the Public: What Every Citizen Should Know (9th ed.). Thousand Oaks, CA: CQ Press.
    Barberá, P., Casas, A., Nagler, J., Egan, P. J., Bonneau, R., Jost, J. T., & Tucker, J. A. (2019). Who leads? Who follows? Measuring issue attention and agenda setting by legislators and the mass public using social media data. American Political Science Review, 113(4), 883-901.
    Bernasek, A., & Mongan, D. T. (2015). All you can pay: How companies use our data to empty our wallets. Bold Type Books.
    Borgesius, Zuiderveen, F. J. (2020). Strengthening legal protection against discrimination by algorithms and artificial intelligence. The International Journal of Human Rights:1-22.
    Brauner, Murawski, M., & Bick, M. (2023). The development of a competence framework for artificial intelligence professionals using probabilistic topic modelling. Journal of Enterprise Information Management.
    Brewer, G. D., & DeLeon, P. (1983). The foundations of policy analysis. Dorsey Press.
    Brinkley, C., & Stahmer, C. (2021). What is in a plan? Using natural language processing to read 461 California city general plans. Journal of Planning Education and Research. https://doi.org/10.1177/0739456X21995890.
    Ceron, A., & Negri, F. (2016). The “social side” of public policy: Monitoring online public opinion and its mobilization during the policy cycle. Policy & Internet, 8(2), 131-147.
    Chaffee, S. H., & Metzger, M. J. (2001). The end of mass communication?. Mass communication & society, 4(4), 365-379.
    Childs, H. L. (1965). Public Opinion Nature Formation and Role. D van nostrand company.
    Christensen, H. S., Karjalainen, M., & Nurminen, L. (2015). Does crowdsourcing legislation increase political legitimacy? The case of Avoin Ministeriö in Finland. Policy & Internet, 7(1), 25-45.
    Clarke, A., & Margetts, H. (2014). Governments and citizens getting to know each other? Open, closed, and big data in public management reform. Policy & Internet, 6(4), 393-417.
    Cogburn, D., & Hine, M. (2017). Introduction to text mining in big data analytics Minitrack. 50th Hawaii International Conference on System Sciences
    Cohen, B. C. (1963). The press and, foreign policy. Princeton, NJ: Princeton University Press.
    Cohen, Glenn, Evgeniou T., Gerke S., and Minssen T.. (2020). The European artificial intelligence strategy: implications and challenges for digital health. The Lancet Digital Health 2 (7):376-379.
    Converse, P. E. (1987). Changing conceptions of public opinion in the political process. The Public Opinion Quarterly, 51, S12-S24.
    Crespi, I. (2013). The public opinion process: How the people speak. UK: Routledge.
    Davidson, W. P., & Sills, D. L. (1968). Public opinion. International encyclopedia of the social sciences, Bd, 13.
    Deibert, R. J. (2000). International plug'n play? Citizen activism, the Internet, and global public policy. International studies perspectives, 1(3), 255-272.
    Dery, D. (1984). Problem definition in policy analysis. University of Kansas.
    Djeffal, C. (2019). AI, Democracy and the Law. The democratization of artificial intelligence: Net politics in the era of learning algorithms:255-283.
    Donsbach, W., & Traugott, M. W. (Eds.). (2007). The SAGE handbook of public opinion research. Sage Publications, Inc.
    Dunn, W. N. (2015). Public policy analysis. UK: Routledge.
    Easton, D. (1965). A systems analysis of political life. New York: John Wiley
    Etzioni, A. (1996). The responsive community: A communitarian perspective. American Sociological Review, 1-11.
    Fishkin, J. S. (1991). Democracy and deliberation: New directions for democratic reform. Yale University Press.
    Fu, X., Li, C., & Zhai, W. (2023). Using Natural Language Processing to Read Plans: A Study of 78 Resilience Plans From the 100 Resilient Cities Network. Journal of the American Planning Association, 89(1), 107-119.
    Gilardi, F., Gessler, T., Kubli, M., & Müller, S. (2022). Social media and political agenda setting. Political Communication, 39(1), 39-60.
    Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
    Glynn, C. J., Herbst, S., O’Keefe, G. J., Shapiro, R. Y., & Jacobs, L. R. (1999). Public opinion and policymaking. Public Opinion, 299-340.
    Greengard, S. (2009). The first internet president. Communications of the ACM, 52(2), 16-18.
    Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of evaluation results through responsive and naturalistic approaches. Jossey-Bass.
    Gupta, K. (2022). A Machine Learning, Natural Language Processing Analysis of Youth Perspectives: Key Trends and Focus Areas for Sustainable Youth Development Policies. arXiv:2211.14321.
    Gutmann, A., & Thompson, D. F. (2004). Why deliberative democracy?. Princeton University Press.
    Habermas, J. (1962). Structural transformation of the public sphere (T. Burger, Trans.) Cambridge.
    Hanekom, S. X. (1987). Public policy: Framework and instrument for action. MacMillan South Africa.
    Herbst, S. (1993). The meaning of public opinion: citizens' constructions of political reality. Media, Culture & Society, 15(3), 437-454.
    Hildreth A. (2008). Attitudes of the Public toward Public Opinion Research and Polling. The SAGE handbook of public opinion research. Sage Publications, Inc.
    Ho, T. K., Shih, W. Y., Kao, W. Y., Hsu, C. H., & Wu, C. Y. (2022). Analysis of the Development Trend of Sports Research in China and Taiwan Using Natural Language Processing. Applied Sciences, 12(18), 9006.
    Hogwood, B. W., & Peters, B. G. (1983). Policy dynamics. Wheatsheaf Books.
    Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American Journal of Political Science, 54(1), 229-247.
    Hsiao, Naiyi, Zhou-Peng Liao & Don-Yun Chen (2018). From Naive Expectation to Realistic Progress: Government Applications of Big Data on Public Opinions Mining. Chen SH. (eds) Big Data in Computational Social Science and Humanities. Computational Social Sciences. Springer, Cham.
    Ilomäki , L , Kantosalo , A & Lakkala , M. (2011). What is digital competence? European Schoolnet (EUN) , Brussels , pp. 1-12 .
    Ingraham, P. W. (1987). Toward more systematic consideration of policy design. Policy Studies Journal, 15(4), 611.
    Jann, W., & Wegrich, K. (2007). Theories of the policy cycle. Handbook of public policy analysis: Theory, politics, and methods, 125, 43-62.
    Jenkins-Smith, H. C., & Sabatier, P. A. (1993). The study of public policy processes (pp. 135-142). Sudbury, MA: Jones and Barlett Publishers, Inc..
    Jones, C. O. (1984). Introduction to the study of public policy. Brooks/Cole Pub Co.
    Jones, M. D., McBeth, M. K., & Shanahan, E. A. (2014). Introducing the narrative policy framework. The science of stories: Applications of the narrative policy framework in public policy analysis, 1-25.
    Kaiser Foundation. (2001). National Survey of the Role of Polls in Policy making. Menlo Park: CA.
    Kim, D. S., & Kim, J. W. (2014). Public opinion sensing and trend analysis on social media: a study on nuclear power on Twitter. International Journal of Multimedia and Ubiquitous Engineering, 9(11), 373-384.
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
    Lavrakas, P. J. (1987). Telephone survey methods: Sampling, selection, and supervision. Sage Publications, Inc.
    Lawler III, E. E. (1994). From job‐based to competency‐based organizations. Journal of organizational behavior, 15(1), 3-15.
    Lawler III, E. E. (1994). From job‐based to competency‐based organizations. Journal of organizational behavior, 15(1), 3-15.
    Levenshus, A. (2010). Online relationship management in a presidential campaign: A case study of the Obama campaign's management of its internet-integrated grassroots effort. Journal of Public Relations Research, 22(3), 313-335.
    Linder, S. H., & Peters, B. G. (1984). From social theory to policy design. Journal of Public Policy, 237-259.
    Lippmann, W. (1922). Public opinion (1). Transaction Publishers.
    Lu, R., Zhu, H., Liu, X., Liu, J. K., & Shao, J. (2014). Toward efficient and privacy-preserving computing in big data era. IEEE Network, 28(4), 46-50.
    Luo, Y. (2014). The Internet and agenda setting in China: The influence of online public opinion on media coverage and government policy. International Journal of Communication, 8, 24.
    Ma, W.L., Fu, T.H, Li, P.H.,(2019). GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction," International Conference on ACL
    Ma, X., Khansa, L., Deng, Y., and Kim, S. S. (2013). Impact of prior reviews on the subsequent review process in reputation systems. Journal of Management Information Systems, 30 (3): 279-310.
    Manza, J., Cook, F. L., & Page, B. I. (Eds.). (2002). Navigating public opinion: Polls, policy, and the future of American democracy. Oxford University Press.
    Margetts, H. Z. (2009). The Internet and public policy. Policy & Internet, 1(1), 1-21.
    May, J. V., & Wildavsky, A. B. (Eds.). (1979). The policy cycle (5). SAGE Publications, Inc.
    Mayer, R. R. (1985). Policy and program planning: A developmental perspective. Prentice Hall.
    McCombs, M. E., & Shaw, D. L. (1972). The agenda-setting function of mass media. Public opinion quarterly, 36(2), 176-187.
    McGregor, L. (2018). Accountability for Governance Choices in Artificial Intelligence: Afterword to Eyal Benvenisti’s Foreword. European Journal of International Law 29 (4):1079-1085.
    McKnight, D. H., & Chervany, N. L. (2001). Trust and distrust definitions: One bite at a time. In Trust in Cyber-societies. Springer, Berlin, Heidelberg.
    Morgan, D., Fellows, C., & Guevara, H. (2008). Emergent approaches to focus group research. Handbook of emergent methods, 207, 20.
    Muneton-Santa, G., Escobar-Grisales, D., López-Pabón, F. O., Pérez-Toro, P. A., & Orozco-Arroyave, J. R. (2022). Classification of Poverty Condition Using Natural Language Processing. Social Indicators Research, 162(3), 1413-1435.
    Neijens, P. (2008). The Deliberating Public and Deliberative Polls1. The SAGE Handbook of Public Opinion Research, 25.
    Oberländer, M., Beinicke, A., & Bipp, T. (2020). Digital competencies: A review of the literature and applications in the workplace. Computers & Education, 146:103752.
    O'Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. Tepper School of Business, 559.
    Oppermann (2019).Artificial Intelligence vs. Machine Learning vs. Deep Learning、Retrieve from: https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac。
    Page, B. I., & Shapiro, R. Y. (1983). Effects of public opinion on policy. The American political science review, 175-190.
    Price, V., & Neijens, P. (1997). Opinion quality in public opinion research. International Journal of Public Opinion Research, 9(4), 336-360.
    Price, V., & Neijens, P. (1998). Deliberative polls: toward improved measures of “informed” public opinion?. International Journal of Public Opinion Research, 10(2), 145-176.
    Princen, S. (2009). Agenda-setting in the European Union. Springer.
    Rochefort, D. A., & Cobb, R. W. (1993). Problem definition, agenda access, and policy choice. Policy studies journal, 21(1), 56-71.
    Rosa, E. A., Freudenberg, W. R., Dunlap, R. E., Kraft, M. E., & Rosa, E. A. (1993). Public reactions to nuclear waste: Citizen's views of repository sitting. Duke University Press, 32, 63.
    Rubin, G. J., Chowdhury, A. K., & Amlôt, R. (2012). How to communicate with the public about chemical, biological, radiological, or nuclear terrorism: a systematic review of the literature. Biosecurity and bioterrorism: biodefense strategy, practice, and science, 10(4), 383-395.
    Sabatier, P. A. (1999). Theories ofthe policy process. WestviewPress: Boulder, CO, 117166.
    Sætra, H. S. (2020). A shallow defence of a technocracy of artificial intelligence: Examining the political harms of algorithmic governance in the domain of government. Technology in Society (62):101-283.
    Salem, F. (2017). The Arab Social Media Report 2017: Social Media and the Internet of Things: Towards Data-Driven. Policymaking in the Arab World (7). Dubai: MBR School of Government.
    Schneider, A., & Ingram, H. (1990). Behavioral assumptions of policy tools. The Journal of Politics, 52(2), 510-529.
    Schneider, A., & Ingram, H. (1993). Social construction of target populations: Implications for politics and policy. American political science review, 87(2), 334-347.
    Segerberg, A., & Bennett, W. L. (2011). Social media and the organization of collective action: Using Twitter to explore the ecologies of two climate change protests. The Communication Review, 14(3), 197-215.
    Shanahan, E. A., Jones, M. D., McBeth, M. K., & Radaelli, C. M. (2018). The narrative policy framework. In Theories of the policy process, 173-213. UK:Routledge.
    Shapiro, R. Y. (2011). Public opinion and American democracy. Public Opinion Quarterly, 75(5), 982-1017.
    Slovic, P. (Ed.). (2001). Smoking: Risk, perception, and policy. Sage publications.
    Slovic, P., Fischhoff, B., & Lichtenstein, S. (1982). Why study risk perception?. Risk analysis, 2(2), 83-93.
    Smith, T. B. (1973). The policy implementation process. Policy sciences, 4(2), 197-209.
    Starling, Grover. (1988). Strategies for Policy Making. Chicago, IL: The Dorsey Press.
    Su, Y., & Borah, P. (2019). Who is the agenda setter? Examining the intermedia agenda-setting effect between Twitter and newspapers. Journal of Information Technology & Politics, 16(3), 236-249.
    Tan, C. M., Barnett, D. J., Stolz, A. J., & Links, J. M. (2011). Radiological incident preparedness: planning at the local level. Disaster medicine and public health preparedness, 5(S1), S151-S158.
    Tu, W.L.、Shih, C.L.、Hsiao, N.Y. & Kuo Y.L., (2019, May). Towards Evidence-Based Policy Deliberation for Environmental Justice - The Case Study of Civil Forums on Nuclear Waste in Taiwan. North American Taiwan Studies Association 25th Annual Conference, University of Washington, Seattle., WA, United States.
    Vehovar, V., & Manfreda, K. L. (2008). Overview: online surveys. The SAGE handbook of online research methods, 1. SAGE Publications, Inc.
    Vining, A. R., & Weimer, D. L. (1999). Inefficiency in public organizations. International Public Management Journal, 2(1), 1-24.
    Zhang, T., Schoene, A. M., Ji, S., & Ananiadou, S. (2022). Natural language processing applied to mental illness detection: a narrative review. NPJ digital medicine, 5(1), 46.
    Description: 博士
    國立政治大學
    公共行政學系
    105256503
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105256503
    Data Type: thesis
    Appears in Collections:[公共行政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    650301.pdf4997KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback