English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52170782      Online Users : 252
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153664


    Title: A Seq2Seq transformation strategy for generalizing a pre-trained model in anomaly detection of rolling element bearings
    Authors: 呂欣澤
    Lu, Owen H.T.
    Contributors: 創國學士班
    Keywords: Anomaly detection;Transformer;Rolling element bearings
    Date: 2024-11
    Issue Date: 2024-09-10 13:08:04 (UTC+8)
    Abstract: The monitoring of the health of Rolling Element Bearings (REBs) in the rolling mill process was recently automated through signal processing and machine learning technologies. However, large data sets are required, and existing methods require precise labels. Moreover, the scarcity of equipment anomalies challenges their practical identification. In addition, machine learning approaches require human resources to manage machine learning models because all REBs in the production line are not identical. Thus, we propose herein a Seq2Seq Transformation Strategy inspired by the accurate performance of such the methods in Natural Language Processing (NLP) and Computer Visioning (CV). Our strategy aims to use an anomaly detection model trained on one signal to detect anomalies in other signals, reducing the need for model management in practical scenarios. Specifically, we considered time series vibration signals collected from the REBs to be analogous to linguistic data, which are sequential and time variant. In essence, our strategy generates synthetic data from a vibration signal represented as the target domain by using a transformer. Subsequently, a model trained by another signal called the source domain is employed to detect the conditions of the target domain. The goal of transformation is to minimize the differences between the distributions of the synthetic and source data. We assumed that the target conditions could be identified from the synthetic data by the source model if the detection model trained on the source domain was precise. Our strategy was experimentally evaluated on six large, unlabeled data sets collected over 1 year from a rolling mill production line in a steel factory. The strategy significantly improved the accuracy of anomaly detection, which had initially been unacceptable when the source model was directly applied to the detection of the target conditions.
    Relation: Expert Systems with Applications, Vol.254, 124297, pp.1-12
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.eswa.2024.124297
    DOI: 10.1016/j.eswa.2024.124297
    Appears in Collections:[創國學士班] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML142View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback