English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51714298      Online Users : 606
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/153579
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153579


    Title: 離散時間鞅及其在卡爾曼濾波之應用研究
    A Study of Discrete Time Martingales with Applications in the Kalman Filter
    Authors: 陳慬瑜
    Chen, Cin-Yu
    Contributors: 許順吉
    陳隆奇

    Sheu, Shuenn-Jyi
    Chen, Lung-Chi

    陳慬瑜
    Chen, Cin-Yu
    Keywords: 鞅理論
    卡爾曼濾波器
    遞迴估計
    隨機過程
    控制理論
    線性二次高斯問題
    應用機率
    隨機控制
    Martingale theory
    Kalman filter
    Recursive estimation
    Stochastic processes
    Control theory
    Linear Quadratic Gaussian (LQG) problem
    Applied probability
    Stochastic control
    Date: 2024
    Issue Date: 2024-09-04 16:11:52 (UTC+8)
    Abstract: 在此篇論文中介紹了鞅理論與卡爾曼濾波器的關聯,可以做為探索應用機率與隨機控制的入門。從一些關於鞅的定義以及基本性質開始,接著闡述這些機率的觀念如何應用在卡爾曼濾波上。當系統有噪音干擾時,卡爾曼濾波器是一個最基本的方法可以提供對於系統狀態的估計。接著介紹一些隨機控制的內容,特別是卡爾曼濾波提供的估計可以視作一個具體的應用在線性二次高斯問題(LQG)上 。此篇論文為初學者提供一個清晰、易懂的基礎,連結機率論的核心概念與濾波和控制的應用。
    This thesis serves as an introductory guide for beginners in applied probability and stochastic control, focusing on the connection between martingale theory and the Kalman filter. By starting with the basics of martingales, the thesis explains how these probabilistic concepts can be applied to understand the Kalman filter, a fundamental tool for estimating the state of a system in the presence of noise. The thesis then introduces control theory, specifically the Linear Quadratic Gaussian (LQG) problem, to demonstrate the practical use of the Kalman filter in optimizing system performance. This work aims to provide a clear and accessible foundation for those new to these topics, linking key ideas in probability with their applications in filtering and control.
    Reference: [1] Masanao Aoki. Optimization of Stochastic Systems: Topics in Discrete-Time Systems. Academic Press, 1989.
    [2] Karl J Åström. Introduction to Stochastic Control Theory. Courier Corporation, 2012.
    [3] Krishna B Athreya and Soumendra N Lahiri. Measure Theory and Probability Theory, volume 19. Springer, 2006.
    [4] Stephen P. Boyd. Ee363: Lecture slides 1. linear quadratic regulator: Discrete time finite horizon. https://web.stanford.edu/class/ee363/lectures/dlqr.pdf, 2008. Accessed: 2024-08-25.
    [5] Stephen P. Boyd. Ee363: Lecture slides 10. linear quadratic stochastic control with partially observed states. https://web.stanford.edu/class/ee363/lectures/lqg.pdf, 2008. Accessed: 2024-08-25.
    [6] Stephen P. Boyd. Ee363: Lecture slides 5. linear quadratic stochastic control. https://web.stanford.edu/class/ee363/lectures/stoch_lqr.pdf,
    2008. Accessed: 2024-08-25.
    [7] Stephen P. Boyd. Ee363: Lecture slides 8. the kalman filter. https://stanford.
    edu/class/ee363/lectures/kf.pdf, 2008. Accessed: 2024-08-25.
    [8] Peter E. Caines. Linear Stochastic Systems. John Wiley & Sons, 1988.
    [9] Xu Chen and Masayoshi Tomizuka. Lecture notes for uc berkeley advanced control systems ii (me233). Accessed: 2024-08-25. http://www.me.berkeley.edu/ME233/sp14, 2014.
    75
    [10] M.H.A. Davis and R.B. Vinter. Stochastic Modelling and Control. Chapman and Hall,
    1985.
    [11] Rick Durrett. Probability: Theory and Examples. Self-published, 2019.
    [12] SvanteJanson. Gaussian Hilbert Spaces. Number129.CambridgeUniversity Press, 1997.
    [13] Jean-François Le Gall. Brownian Motion, Martingales, and Stochastic Calculus. Springer, 2016.
    [14] Hamed Masnadi-Shirazi, Alireza Masnadi-Shirazi, and Mohammad-Amir Dastgheib. A step by step mathematical derivation and tutorial on kalman filters. arXiv preprint
    arXiv:1910.03558, 2019.
    [15] Ian R. Reid. Estimation ii. https://api.semanticscholar.org/CorpusID: 7460075, 2010. Accessed: 2024-08-25.
    [16] Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties. 2004.
    [17] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.
    [18] David Williams. Probability with Martingales. Cambridge University Press, 1991.
    Description: 碩士
    國立政治大學
    應用數學系
    111751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111751005
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100501.pdf701KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback