English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51658983      Online Users : 397
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/153387
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153387


    Title: 基於對比式學習之負樣本探勘於改進進階檢索模型
    Improving Dense Retrieval Model via Hard Negative Mining based on Contrastive Learning
    Authors: 陳采宗
    Chen, Tsai-Tsung
    Contributors: 蔡銘峰
    Tsai, Ming-Feng
    陳采宗
    Chen, Tsai-Tsung
    Keywords: 資訊檢索
    對比式學習
    負樣本選擇
    Information Retrieval
    Contrastive Learning
    Negative Sample Selection
    Date: 2024
    Issue Date: 2024-09-04 15:01:22 (UTC+8)
    Abstract: 資訊檢索在現實生活中具有廣泛的應用,其重要性日益顯著。隨著人工智慧時代的到來,資訊檢索技術已成為我們日常生活和工作中不可或缺的一部分。例如,網路搜索和問答系統是常見的應用,能夠根據用戶的查詢從大量文本中檢索出相關的訊息。然而,如何在訓練中選擇適當的負樣本以提升檢索模型的性能,仍然是一個挑戰。負樣本的選擇對於對比式學習特別重要,因為它們直接影響模型的鑑別能力和最終效果。過於簡單的負樣本可能不足以挑戰模型,而過於困難的負樣本則可能混淆模型,導致效果不佳。因此,找到一種能夠平衡負樣本難度的方法至關重要。
    本研究針對密集檢索任務中的負樣本選擇問題,提出了一種基於對比式學習和動態調整邊界的方法,以挖掘適中難度的負樣本來提升檢索性能。我們的方法不僅有效避免了過於簡單或過於困難的負樣本對模型訓練的負面影響,還能夠顯著提高模型的檢索效果。在 E5- Small、SBERT 和 BERT 模型上,我們的方法在 NFCorpus 和 SciFact 等多個資料集上均顯示了優異的性能,在 Recall@100 和 NDCG@10 兩個指標上,效果最佳。此外,我們的方法相較於其他動態負樣本選擇策略,具有更高的訓練效率,顯著減少了訓練時間和資源消耗。
    實驗結果顯示,我們的方法能夠動態調整負樣本的難度適應不同模型和資料集的需求,從而提升模型的訓練效果和穩定性。未來,我們將進一步擴展研究範圍,在更多資料集和模型上驗證我們方法的有效性,並探索其他可能的改進方向,以提升自然語言處理任務中的檢索性能。
    Information retrieval has widespread applications in real life, and its importance is becoming increasingly significant. With the advent of the artificial intelligence era, information retrieval technology has become an indispensable part of our daily lives and work. For example, web search and question-answering systems are common applications that can retrieve relevant information from a vast amount of text based on user queries. However, selecting appropriate negative samples to enhance the performance of retrieval models remains a challenge. The selection of negative samples is particularly critical for contrastive learning, as it directly affects the model’s discriminative power and final performance. Overly simple negative samples may not challenge the model sufficiently, while overly difficult negative samples can confuse the model, leading to suboptimal results. Therefore, finding a method to balance the difficulty of negative samples is crucial.
    This study addresses the issue of negative sample selection in dense retrieval tasks by proposing a method based on contrastive learning and dynamic margin adjustment to mine moderately difficult negative samples, thereby enhancing retrieval performance. Our method effectively avoids the adverse effects of overly simple or overly difficult negative samples on model training and significantly improves retrieval effectiveness. On models such as E5-Small, SBERT, and BERT, our method demonstrates superior performance
    across multiple datasets, including NFCorpus and SciFact, particularly excelling in the Recall@100 and NDCG@10 metrics. Additionally, compared to other dynamic negative sample selection strategies, our approach offers higher training efficiency, significantly reducing training time and resource consumption.
    Experimental results indicate that our method can dynamically adjust the difficulty of negative samples, accommodating the needs of different models and datasets, thereby enhancing model training effectiveness and stability. In the future, we plan to extend our research to validate the effectiveness of our method on more datasets and models and explore potential improvements to further enhance retrieval performance in natural language processing tasks.
    Reference: [1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
    [2] T. Gao, X. Yao, and D. Chen. Simcse: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.
    [3] V. Karpukhin, B. Og ̆uz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906, 2020.
    [4] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Ku ̈ttler, M.Lewis,W.-t.Yih,T.Rockta ̈schel,etal. Retrieval-augmentedgenerationfor knowledge-intensive nlp tasks. Advances in Neural Information Processing Sys- tems, 33:9459–9474, 2020.
    [5] B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed
    representations of text for web search. In Proceedings of the 26th international n
    g
    conference on world wide web, pages 1291–1299, 2017.
    [6] R. Nogueira and K. Cho. Passage re-ranking with bert. arXiv preprint
    arXiv:1901.04085, 2019.
    [7] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
    bert-networks. arXiv preprint arXiv:1908.10084, 2019.
    [8] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.
    Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.
    [9] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
    Information processing & management, 24(5):513–523, 1988.
    [10] N.Thakur,N.Reimers,A.Ru ̈ckle ́,A.Srivastava,andI.Gurevych.Beir:Aheteroge- nous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint arXiv:2104.08663, 2021.
    [11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information pro- cessing systems, 30, 2017.
    [12] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder, and F. Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint arXiv:2212.03533, 2022.
    [13] L.Xiong,C.Xiong,Y.Li,K.-F.Tang,J.Liu,P.Bennett,J.Ahmed,andA.Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808, 2020.
    [14] J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. Optimizing dense retrieval model training with hard negatives. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1503–1512, 2021.
    Description: 碩士
    國立政治大學
    資訊科學系
    111753160
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111753160
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    316001.pdf1434KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback