政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/153285
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113873/144892 (79%)
造访人次 : 51942950      在线人数 : 640
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/153285


    题名: 負碳經濟之制度設計及影響評估
    Institution Design and Impact Assessment of Negative Carbon Economy
    作者: 簡子寧
    Chien, Zih-Ning
    贡献者: 蕭代基
    Shaw, Dai-Gee
    簡子寧
    Chien, Zih-Ning
    关键词: 淨負排放
    碳定價
    碳債
    碳稅基金系統
    碳移除義務
    Net-negative Emissions
    Carbon Pricing
    Carbon Debt
    Tax-Fund System
    Carbon Removal Obligation (CRO)
    日期: 2024
    上传时间: 2024-09-04 14:37:13 (UTC+8)
    摘要: 在溫室氣體排放密集的社會現況中,將氣候目標由淨零排放轉向淨負排放,可使本世紀應償還的碳債數量被納入各種制度及政策考量中,以更有效地控制全球平均溫升在《巴黎協定》所明文的範圍內。

    本研究針對碳稅基金系統(tax-fund system)和碳移除義務(carbon removal obligation,CRO)兩種負碳經濟制度工具,探討其在全球範疇的碳定價和深度減碳政策下,跨期碳移除(carbon dioxide removal,CDR)量和溫室氣體淨排放路徑等環境面效果,以及總體經濟成長、消費者所得變化和個別產業發展之經濟影響評估。

    實證結果顯示,即使碳稅的初始稅率較低,碳稅基金系統可透過跨期除碳基金的累積,與碳價負擔較高的CRO制度,在氣候目標的達成和淨排放量的控制上有相似的政策效果,而CRO制度的交易成本雖高,在完整且可信的政府監管機制下,亦可在10-20年內快速消除碳債,兩者的政策成本和效益各有不同,其政策意涵亦有差別;碳稅基金系統適合與傳統碳定價政策結合,可成為有效且永續的CDR融資工具,而CRO作為可確立未來移除量的制度工具,逐步引入市場後預期可刺激CDR的研發和供給,但此制度仍處於提案階段,尚需更多研究結果以驗證其政策效果。

    此外,碳定價和深度減碳政策所引發的大量資本投入將在短期內促進全球經濟成長,然而,物價水準和個人可支配所得的變動皆因地區而異;對於排放密集產業而言,雖化石燃料和電力部門因受電力結構轉型的影響,使其實質產值低於基準情境,但其餘受深度減碳政策規範的陸上運輸、鋼鐵、化學、水泥工業之產值未顯現出負面影響。
    In the current context of a society characterized by high greenhouse gas emissions, shifting climate targets from net-zero emissions to net-negative emissions allows the consideration of carbon debt repayment within various frameworks and policies. This approach aims to more effectively control the global average temperature rise within the limits explicitly outlined in the Paris Agreement.

    This study focuses on two negative-carbon economic instruments: the tax-fund system and the carbon removal obligation (CRO). It examines their environmental impacts, such as intertemporal carbon dioxide removal (CDR) quantities and net greenhouse gas emission trajectories under global carbon pricing and deep decarbonization policies. Additionally, it assesses the economic implications on overall economic growth, consumer income changes, and individual industry developments.

    Empirical results indicate that even with a relatively low initial carbon tax rate, the tax-fund system, through the accumulation of intertemporal CDR funds, achieves similar policy effects in meeting climate targets and controlling net emissions as the more burdensome CRO system. Although the CRO system incurs higher transaction costs, it can rapidly eliminate carbon debt within 10-20 years under a robust and credible government oversight mechanism. The two systems exhibit differing policy costs and benefits, leading to distinct policy implications. The tax-fund system, suitable for integration with traditional carbon pricing policies, emerges as an effective and sustainable financing tool for CDR. In contrast, the CRO, as a mechanism establishing future removal obligations, is expected to stimulate CDR research and supply as it gradually enters the market, though it remains in the proposal stage and requires further empirical validation.

    Moreover, the significant capital investments triggered by carbon pricing and deep decarbonization policies are likely to spur global economic growth in the near term. However, changes in price levels and disposable personal income vary by region. For emission-intensive industries, while the fossil fuel and electricity sectors, affected by power structure transitions, show lower real output compared to baseline scenarios, other industries regulated under deep decarbonization policies—such as land transportation, steel, chemicals, and cement—do not exhibit negative impacts on their output.
    參考文獻: 中文參考文獻
    1. 王寶貫與蕭代基(主編)(2023)。淨零之路-臺灣的雙贏策略。臺北市:中央研究院環境變遷研究中心。
    2. 中華經濟研究院(2011)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(1/2)。國家科學委員會補助研究計畫。
    3. 中華經濟研究院、台灣經濟研究院(2012)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(2/2)。國家科學委員會補助研究計畫。
    4. 陳筆、王麗文與莊惠婷(2023)。淨零之路-臺灣的雙贏策略之附錄「溫室氣體減量邊際成本曲線」。臺北市:中央研究院環境變遷研究中心。
    5. 傅俞瑄(2019)。東亞深度減碳政策對所得分配之影響。碩士論文,國立政治大學。
    6. 蕭代基、黃琝琇、林師模與傅俞瑄(2022)。國際碳邊境調整機制對臺灣減碳與經濟的影響。臺灣能源期刊,9(1): 1-24。

    英文參考文獻
    1. Aatola, P., Ollikainen, M., & Toppinen, A. (2013). Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Economics, 36, 380-395.
    2. Barnett, H. J., & Morse, C. (2013). Scarcity and growth: The economics of natural resource availability. RFF Press.
    3. Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature communications, 10(1), 1783.
    4. Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O., ... & Hall, J. W. (2021). Operationalizing the net-negative carbon economy. Nature, 596(7872), 377-383.
    5. Bednar, J., Baklanov, A., & Macinante, J. (2023a). The Carbon Removal Obligation: Updated analytical model and scenario analysis.
    6. Bednar, J., Macinante, J., Baklanov, A., Hall, J. W., Wagner, F., Ghaleigh, N. S., & Obersteiner, M. (2023b). Beyond emissions trading to a negative carbon economy: a proposed carbon removal obligation and its implementation. Climate Policy, 24(4), 501-514.
    7. Bednar, J., Höglund, R., Möllersten, K., Obersteiner, M. & Tamme, E. (2023c). The role of carbon dioxide removal in contributing to the long-term goal of the Paris Agreement.
    8. Bassi, A. M., Pallaske, G., Bridle, R., & Bajaj, K. (2023). Emission Reduction via Fossil Fuel Subsidy Removal and Carbon Pricing, Creating Synergies with Revenue Recycling. World, 4(2), 225-240.
    9. Coase, R. H. (1960). The problem of social cost. Journal of Law and Economics, 3, 1-44.
    10. Cambridge Econometrics. (2022). E3ME model manual. Retrieved from https://www.e3me.com/
    11. Dasgupta, P. S., & Heal, G. M. (1979). Economic theory and exhaustible resources. Cambridge University Press.
    12. Dietz, S., & Venmans, F. (2019). Cumulative carbon emissions and economic policy: in search of general principles. Journal of Environmental Economics and Management, 96, 108-129.
    13. European Commission. (2007). Competitiveness effects of environmental tax reforms. Retrieved from https://cordis.europa.eu/project/id/501993/fr
    14. European Commission, Directorate-General for Climate Action, Directorate-General for Energy, Directorate-General for Mobility and Transport, Zampara, M., Obersteiner, M., Evangelopoulou, S. (2016). EU reference scenario 2016 : energy, transport and GHG emissions : trends to 2050, Publications Office. https://data.europa.eu/doi/10.2833/001137
    15. European Commission. (2018). A clean planet for all: A European long-term strategic vision for a prosperous, modern, competitive, and climate neutral economy. Retrieved from https://climatecooperation.cn/climate/a-clean-planet-for-all-a-european-long-term-strategic-vision-for-a-prosperous-modern-competitive-and-climate-neutral-economy/
    16. Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., ... & Minx, J. C. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental research letters, 13(6), 063002.
    17. Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. Econometrica, 82(1), 41-88.
    18. Green, J. F. (2017). Don't link carbon markets. Nature, 543(7646), 484-486.
    19. Hickey, C., Fankhauser, S., Smith, S. M., & Allen, M. (2023). A review of commercialisation mechanisms for carbon dioxide removal. Frontiers in Climate, 4, 1101525.
    20. Hotelling, H. (1931). The economics of exhaustible resources. Journal of political Economy, 39(2), 137-175.
    21. HM Treasury. (2022) The Green Book. Retrieved from https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government/the-green-book-2020
    22. IPCC. (2018). Global warming of 1.5 ºC. Retrieved from https://www.ipcc.ch/sr15/
    23. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
    24. International Carbon Action Partnership (ICAP). (2021). Emissions trading systems and net zero: Trading removals.
    25. IPCC. (2022). AR6 climate change 2022: Mitigation of climate change. Retrieved from https://www.ipcc.ch/report/ar6/wg3/
    26. IPCC. (2023). AR6 synthesis report: Climate change 2023. Retrieved from https://www.ipcc.ch/report/ar6/syr/
    27. I4CE. (2024). Maximising benefits of carbon pricing through carbon revenue use.
    28. Jenkins, S., Mitchell-Larson, E., Ives, M. C., Haszeldine, S., & Allen, M. (2021). Upstream decarbonization through a carbon takeback obligation: an affordable backstop climate policy. Joule, 5(11), 2777-2796.
    29. Jenkins, S., Kuijper, M., Helferty, H., Girardin, C., & Allen, M. (2023). Extended producer responsibility for fossil fuels. Environmental Research Letters, 18(1), 011005.
    30. Kato, S., Lee, S., He, Y., Yoshioka, T., Morotomi, T., & Chewpreecha, U. (2023). Impact of Carbon Neutrality on the Economy and Industry Assuming Japan’s Achievement of 2030 Power Mix Plan: A 2050 Perspective Based on the E3ME Macro-Econometric Model. Energies, 16(18), 6661.
    31. McKinsey & Company. (2009). Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost curve.
    32. Mercure, J. F., Pollitt, H., Edwards, N. R., Holden, P. B., Chewpreecha, U., Salas, P., ... & Vinuales, J. E. (2018). Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy strategy reviews, 20, 195-208.
    33. Mercure, J. F., Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., ... & Viñuales, J. E. (2021). Reframing incentives for climate policy action. Nature Energy, 6(12), 1133-1143.
    34. Nordhaus, W. D. (2010). Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the National Academy of Sciences, 107(26), 11721-11726.
    35. Oxera. (2022). Market design for negative emissions in the UK ETS.
    36. Pigou, A. C. (1932). The economics of welfare 4th. Basingstoke: Palgrave Macmillan.
    37. Royal Society. (2018). Greenhouse gas removal. Retrieved from https://royalsociety.org/news-resources/projects/greenhouse-gas-removal/
    38. Rafaty, R., Dolphin, G., & Pretis, F. (2020). Carbon pricing and the elasticity of CO2 emissions. Nature Climate Change, 10, 581-586.
    39. Rickels, W., Rothenstein, R., Schenuit, F., & Fridahl, M. (2022). Procure, bank, release: carbon removal certificate reserves to manage carbon prices on the path to net-zero. Energy Research & Social Science, 94, 102858.
    40. Stern, N. (2006). Stern Review: The economics of climate change.
    41. Stark, C., Thompson, M., Andrew, T., Beasley, G., Bellamy, O., Budden, P., ... & Vause, E. (2019). Net Zero: The UK’s contribution to stopping global warming.
    42. Shaw, D., & Fu, Y. H. (2020). Climate clubs with tax revenue recycling, tariffs, and transfers. Climate Change Economics, 11(04), 2040008.
    43. Strefler, J., Kriegler, E., Bauer, N., Luderer, G., Pietzcker, R. C., Giannousakis, A., & Edenhofer, O. (2021). Alternative carbon price trajectories can avoid excessive carbon removal. Nature Communications, 12(1), 2264.
    44. Semieniuk, G., Holden, P. B., Mercure, J. F., Salas, P., Pollitt, H., Jobson, K., ... & Viñuales, J. E. (2022). Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nature Climate Change, 12(6), 532-538.
    45. Shaw, D., Fu, Y. H., & Chen, Y. Q. (2023). East Asia climate club: Pathway toward 2050 net-zero. Climate Change Economics, 14(04), 2340005.
    46. Smith, S., Geden, O., Gidden, M., Lamb, W., Nemet, G., Minx, J., ... & Vaughan, N. (2024). The state of carbon dioxide removal.
    47. Thompson, M., Stark, C., & Climate Change Committee. (2019). Net Zero–Technical Report.
    48. Tarruella, M., Huber, R., Mack, G., El Benni, N., & Finger, R. (2023). Cost-effectiveness of farm-vs. regional-level climate change mitigation policies. Q Open, qoad022.
    49. Vogt-Schilb, A., Meunier, G., & Hallegatte, S. (2018). When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Journal of Environmental Economics and Management, 88, 210-233.
    50. World Bank (WB). (2023, April 20). What you need to know about abatement costs and decarbonisation. Retrieved from https://www.worldbank.org/en/news/feature/2023/04/20/what-you-need-to-know-about-abatement-costs-and-decarbonisation
    51. World Bank. (2024). State and trends of carbon pricing 2024.
    描述: 碩士
    國立政治大學
    經濟學系
    111258004
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111258004
    数据类型: thesis
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    800401.pdf5633KbAdobe PDF1检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈