政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152928
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52077273      Online Users : 584
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152928


    Title: 整合生成式與知識型人工智慧聊天機器人於影片自主學習之成效影響研究
    The Effects of a Video Learning System with the Support of Integrating Generative and Knowledge-based AI Chatbots on Self-Directed Learning Performance
    Authors: 陳奕慈
    Chen, Yi-Cih
    Contributors: 陳志銘
    Chen, Chih-Ming
    陳奕慈
    Chen, Yi-Cih
    Keywords: 影片學習
    自主學習
    聊天機器人
    Rasa
    ChatGPT
    Video-based learning
    Self-directed learning
    Chatbot
    Rasa
    ChatGPT
    Date: 2024
    Issue Date: 2024-08-05 14:51:55 (UTC+8)
    Abstract: 影片為自主學習常用的一種教學媒體,經常被應用於線上學習與翻轉教學。然而,學習者在使用影片進行自主學習時,常常會因為缺乏觀看影片的動機、缺少學習同伴,抑或教師解答學習問題等因素而影響其學習表現。因此,如何有效提升學習者使用影片進行自主學習時的學習成效與學習動機,一直是重要的研究議題。過去已有少數研究嘗試將聊天機器人技術融入於影片自主學習,然而,這些研究所發展的聊天機器人,其對話資訊通常係由人工制定,並受限於資料庫建立的語料範圍,因此無法完整且精準地回覆學習者在學習過程中的提問,致使無法有效輔助學習者進行自主學習。隨著生成式人工智慧聊天機器人技術的迅速發展,OpenAI於2022年推出之聊天生成預訓練轉換器(ChatGPT),讓輔助學習之聊天機器人發展產生突破性的發展。許多研究指出,ChatGPT能夠提供多樣的功能來輔助教師與學習者進行教與學。然而,雖然ChatGPT基於大型語言模型具有廣博之可對話語料,但與使用者進行對話時,可能會生成錯誤的應答資訊,也無法回答跟特定情境具有關聯的問題。相較之下,Rasa為一種可以利用其所提供的自然語言理解與回應框架,來建置適合應用於特定情境之聊天機器人。因此,本研究使用Rasa來建置由專家知識組成的小型語料庫,並結合ChatGPT來補足Rasa缺少廣博知識的問題,開發出一種更具實用性之整合生成式與知識型之AI聊天機器人,來更有效的輔以學習者進行影片自主學習。
    本研究採用單一實驗組前後測設計,以桃園市某高中一年級共36名學生為研究對象,探討使用「具整合生成式與知識型AI聊天機器人支援之影片學習系統」輔以學習者進行影片自主學習,是否有助於提升學習者的學習成效與學習動機,並且能否帶來良好的科技接受度與聊天機器人優使性感受。此外,亦探討學習者對於聊天機器人的優使性感受是否與學習成效、學習動機,以及科技接受度具有顯著的相關性。另外,也進一步探討使用此一系統輔以自主學習之高低不同自律能力、不同認知風格,以及高低不同先備知識的學習者,在學習成效、學習動機、科技接受度,以及聊天機器人優使性感受上是否具有顯著的差異。最後,本研究亦採用半結構深度訪談法,了解學習者使用「具整合生成式與知識型AI聊天機器人支援之影片學習系統」輔以進行影片自主學習的學習歷程、感受與建議。
    研究結果發現,無論是全體、高低不同自律能力、不同認知風格,還是高低不同先備知識的學習者使用「具整合生成式與知識型AI聊天機器人支援之影片學習系統」輔以進行影片自主學習皆能夠帶來顯著的學習成效提升。再者,學習者在使用「具整合生成式與知識型AI聊天機器人支援之影片學習系統」輔以進行影片自主學習時,對於與AI聊天機器人的互動像真人對話一般的感受程度,跟學習成效具有顯著關聯。在學習動機上,「具整合生成式與知識型AI聊天機器人支援之影片學習系統」能有效地提升全體、低自律能力、場地獨立型,以及高低不同先備知識的學習者使用影片進行自主學習的學習動機。此外,學習者對於使用「具整合生成式與知識型AI聊天機器人支援之影片學習系統」輔以進行影片自主學習的科技接受度高於中位數,且除了對於學習者的隱私保護之外,學習者對於整合生成式與知識型AI聊天機器人的優使性感受亦均高於中位數。最後,根據訪談結果顯示,學習者普遍認為相較於單獨使用ChatGPT輔助進行自主學習,採用本研究所開發的整合生成式與知識型AI聊天機器人輔以進行影片自主學習會更加理想。
    綜合以上所述,本研究成功結合Rasa與ChatGPT工具,發展出一個「整合生成式與知識型AI聊天機器人之影片自主學習系統」,改善過去聊天機器人無法有效輔助學習者進行自主學習的問題,並且顯著提升了學習者的學習成效與學習動機。此外,本研究為聊天機器人在教育領域的應用,開展了新的發展方向。
    Video is commonly used for self-directed learning, especially in online courses and flipped classrooms. However, learners who engage in self-directed learning through videos often face challenges such as lack of learning motivation, absence of peer support or teachers to respond their learning questions, all of which can impact their learning effectiveness. Therefore, effectively improving learners’ learning motivation and learning effectiveness when using videos for self-directed learning is an essential research issue in educational settings.
    Previous studies have explored the integration of chatbot technology into video-based self-directed learning. However, these chatbots developed typically rely on manually-crafted dialogues constrained by the corpus established in the database, resulting in limitations in their ability to accurately respond to learner queries and provide effective support. The advent of generative artificial intelligence chatbot technology, exemplified by OpenAI’s ChatGPT launched in 2022, represents a significant advancement in chatbot development for educational purposes. Despite ChatGPT’s broad conversational capabilities based on Large Language Models (LLM), like other generative AI chatbots, it occasionally generates incorrect information or fails to respond questions within specific contexts.
    In contrast, Rasa provides a natural language understanding and response framework that allows for the creation of chatbots tailored to specific contexts using small, custom-built corpora. Therefore, this study utilized Rasa to build an expert knowledge-based chatbot trained by a human expert based on a small corpus and integrated it with ChatGPT to complement the lack of extensive knowledge in Rasa. This combined approach aims to create a more practical AI chatbot capable of effectively assisting learners in video-based self-directed learning.
    The study adopts a one-group pretest-posttest design involving 36 Grade 10 learners as the research subjects from a senior high school in Taoyuan City, Taiwan to participant in an instruction experiment. The aim of this study was to investigate whether the “Video Learning System with the Support of Integrating Generative and Knowledge-based AI Chatbots (VLS-SIGKAIC)” can significantly improve learners’ learning effectiveness and motivation in video-based self-directed learning. Additionally, the study evaluates the system’s technology acceptance and the learners’ satisfaction with the chatbot experience. In addition, the study explores the correlation between learners’ satisfaction with the chatbot experience and their learning effectiveness, motivation, and technology acceptance. Furthermore, this study investigates potential differences in learning effectiveness, motivation, technology acceptance, and satisfaction with chatbot usage among learners with different levels of self-regulated learning ability, cognitive styles, and prior knowledge while utilizing this system for self-directed learning. Lastly, semi-structured in-depth interviews are employed to understand learners’ perceptions, feelings, and suggestions towards using VLS-SIGKAIC.
    Experimental results showed that VLS-SIGKAIC significantly improved learning effectiveness for all learners, regardless of their levels of self-regulated learning ability, cognitive styles, or prior knowledge levels. Furthermore, a significant correlation was observed between learners’ perceptions of interacting with the AI chatbot as if it were a human and their learning effectiveness. In terms of learning motivation, the system effectively improved the learning motivation of all learners, particularly those with lower self-regulated learning abilities, field-independent cognitive style, and different levels of prior knowledge. Additionally, learners’ technology acceptance of the system exceeded the median, and their satisfaction with utilizing the integrated AI chatbot, except for concerns related to personal privacy protection, also surpassed the median. Interview results suggested that learners generally perceived the integrated generative and knowledge-based AI chatbot for video-based self-directed learning as more ideal compared to solely relying on ChatGPT.
    In conclusion, this study successfully integrated Rasa and ChatGPT to develop a VLS-SIGKAIC to support video-based self-directed learning. This system addressed the limitations of previous chatbots in effectively assisting learners in self-directed learning and significantly improving learners’ learning effectiveness and motivation. Furthermore, this study charts new directions for the application of chatbots within the educational field.
    Reference: 中文
    吳裕益(1987)。認知能力與認知型態個別差異現象之探討。教育學刊,7, 300-253。
    何祥如、黃勤雄(2008)。聯結語文與科學學習-KWL教學策略於幼兒階段之應用。幼兒教保研究,1,67–81。https://doi.org/10.6471/JECEC.200803.0067。
    張春興(1994)。教育心理學。台灣東華書局股份有限公司。
    Virtuoso(2023)。都問AI吧!ChatGPT上手的第一本書。商周出版。
    英文
    A. N. Varnavsky, "Chatbot to Increase the Effectiveness of the «Flipped Classroom» Technology," 2022 2nd International Conference on Technology Enhanced Learning in Higher Education (TELE), Lipetsk, Russian Federation, 2022, pp. 289-293, doi: 10.1109/TELE55498.2022.9801001.
    Abu Shawar, B., & Atwell, E. (2007). Chatbots: Are they Really Useful? Journal for Language Technology and Computational Linguistics, 22(1), 29–49. https://doi.org/10.21248/jlcl.22.2007.88
    Abukmeil, M., Ferrari, S., Genovese, A., Piuri, V., & Scotti, F. (2021). A Survey of. Unsupervised Generative Models for Exploratory Data Analysis and Representation Learning. ACM Computing Surveys, 54(5), 99:1-99:40. https://doi.org/10.1145/3450963
    Atif, Y. (2013). Conversational learning integration in technology enhanced classrooms. Computers in Human Behavior, 29(2), 416–423. https://doi.org/10.1016/j.chb.2012.07.026
    Baidoo-Anu, D., & Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52-62.
    Bailey, L. A. (2017). Adaptation of Know, Want to Know, and Learned Chart for Problem-Based Learning. Journal of Nursing Education, 56(8), 506–508. https://doi.org/10.3928/01484834-20170712-11
    Bautista, P., & Inventado, P. S. (2021). Protecting Student Privacy with Synthetic Data from Generative Adversarial Networks. In I. Roll, D. McNamara, S. Sosnovsky, R. Luckin, & V. Dimitrova (Eds.), Artificial Intelligence in Education (pp. 66–70). Springer International Publishing. https://doi.org/10.1007/978-3-030-78270-2_11
    Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class. every day (1. ed). ASCD.
    Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open Source Language Understanding and Dialogue Management (arXiv:1712.05181). arXiv. https://doi.org/10.48550/arXiv.1712.05181
    Borsci, S., Malizia, A., Schmettow, M., Van Der Velde, F., Tariverdiyeva, G., Balaji, D., & Chamberlain, A. (2022). The Chatbot Usability Scale: the design and pilot of a usability scale for interaction with AI-based conversational agents. Personal and Ubiquitous Computing, 26, 95-119.
    Brame, C. J. (2016). Effective Educational Videos: Principles and Guidelines for Maximizing. Student Learning from Video Content. CBE—Life Sciences Education, 15(4), es6. https://doi.org/10.1187/cbe.16-03-0125
    Brown, A. L., & Palincsar, A. S. (1987). Reciprocal teaching of comprehension skills: A natural history of one program for enhancing learning. In J. D. Day & J. G. Borkowski (Eds.), Intelligence and exceptionality: New directions for theory, assessment, and instructional practices (pp. 81–131) .Ablex Publishing.
    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D. (2020). Language Models are Few-Shot Learners (arXiv:2005.14165). arXiv. https://doi.org/10.48550/arXiv.2005.14165
    Chen, C. M., & Chen, I. C. (2019). The effects of video-annotated listening review mechanism. on promoting EFL listening comprehension. Interactive Learning Environments, 29, 1–15. https://doi.org/10.1080/10494820.2019.1579232
    Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial Intelligence (AI). Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 25(1), 161–182. https://doi.org/10.1007/s10796-022-10291-4
    Chen, Y., Lee, J. K. Y., Kwong, G., Pow, E. H. N., & Tsoi, J. K. H. (2022). Morphology and fracture behavior of lithium disilicate dental crowns designed by human and knowledge-based AI. Journal of the Mechanical Behavior of Biomedical Materials, 131, 105256. https://doi.org/10.1016/j.jmbbm.2022.105256
    Chiu, P. S., Chen, H. C., Huang, Y. M., Liu, C. J., Liu, M. C., & Shen, M. H. (2016). A video annotation learning approach to improve the effects of video learning. Innovations in Education and Teaching International, 55(4), 459–469. https://doi.org/10.1080/14703297.2016.1213653
    Chuah, K. M., & Kabilan, M. K. (2021). Teachers' Views on the Use of Chatbots to Support. English Language Teaching in a Mobile Environment. International Journal of Emerging Technologies in Learning, 16(20).
    Colace, F., Santo, M. D., Lombardi, M., Pascale, F., Pietrosanto, A., & Lemma, S. (2018). Chatbot for E-Learning: A Case of Study. International Journal of Mechanical Engineering and Robotics Research, 528–533. https://doi.org/10.18178/ijmerr.7.5.528-533
    Credé, M., & Phillips, L. A. (2011). A meta-analytic review of the Motivated Strategies for Learning Questionnaire. Learning and Individual Differences, 21(4), 337–346. https://doi.org/10.1016/j.lindif.2011.03.002
    Damayanti, N., & Mundilarto, M. (2022). The iSpring learning media integrated with the KWL learning model: Impact on Students’ self-directed learning in momentum and impulse. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 11(1), Article 1. https://doi.org/10.24042/jipfalbiruni.v11i1.11363
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer。technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
    Deveci Topal, A., Dilek Eren, C., & Kolburan Geçer, A. (2021). Chatbot application in a 5th grade science course. Education and Information Technologies, 26(5), 6241–6265. Scopus. https://doi.org/10.1007/s10639-021-10627-8
    Drori, I., Zhang, S. J., Shuttleworth, R., Zhang, S., Tyser, K., Chin, Z., Lantigua, P., Surbehera , S., Hunter, G., Austin, D., Tang, L., Hicke, Y., Simhon, S., Karnik, S., Granberry, D., & Udell, M. (2022). From Human Days to Machine Seconds: Automatically Answering and Generating Machine Learning Final Exams. arXiv.org. https://arxiv.org/abs/2206.05442v7
    Duguleană, M., Briciu, V. A., Duduman, I. A., & Machidon, O. M. (2020). A Virtual Assistant for Natural Interactions in Museums. Sustainability, 12(17), 6958. https://doi.org/10.3390/su12176958
    Essel, H. B., Vlachopoulos, D., Tachie-Menson, A., Johnson, E. E., & Baah, P. K. (2022). The impact of a virtual teaching assistant (chatbot) on students’ learning in Ghanaian higher education. International Journal of Educational Technology in Higher Education, 19(1), 57. https://doi.org/10.1186/s41239-022-00362-6
    Flavell, J. H. (1979). Metacognition and cognitive monitoring. American Psychologist, 34, 906–911.
    Gallo, S., Malizia, A., & Paternò, F. (2023). Towards a Chatbot for Creating Trigger-Action. Rules based on ChatGPT and Rasa. IS-EUD 2023: 9th International Symposium on End-User Development, 6-8 June 2023, Cagliari, Italy
    Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science。motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159–1176. https://doi.org/10.1002/tea.20442
    Google Cloud(2023). Generate text, images, code, and more with Google Cloud AI. Generate. text, images, code, and more with Google Cloud AI
    Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An. empirical study of MOOC videos. Proceedings of the First ACM Conference on Learning @ Scale Conference, 41–50. https://doi.org/10.1145/2556325.2566239
    Haase, J., & Hanel, P. H. P. (2023). Artificial muses: Generative Artificial Intelligence Chatbots Have Risen to Human-Level Creativity (arXiv:2303.12003). arXiv. https://doi.org/10.48550/arXiv.2303.12003
    Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2), 1–11. https://doi.org/10.30935/cedtech/13036
    Haristiani, N. (2019). Artificial Intelligence (AI) Chatbot as Language Learning Medium: An. inquiry. Journal of Physics: Conference Series, 1387(1), 012020. https://doi.org/10.1088/1742-6596/1387/1/012020
    Hew, K. F., & Huang, W. (2023). Promoting engagement in online learning beyond COVID-19: Possible strategies and directions for future research. Future in Educational Research, 1(1), 27–49. https://doi.org/10.1002/fer3.9
    Hew, K. F., Huang, W., Du, J., & Jia, C. (2021). Using Chatbots in Flipped Learning Online. Sessions: Perceived Usefulness and Ease of Use. Blended Learning: Re-Thinking and Re-Defining the Learning Process, 164–175. https://doi.org/10.1007/978-3-030-80504-3_14
    Hornby, G., Greaves, D. (2022). Metacognitive Strategies. In: Essential Evidence-Based Teaching Strategies. Springer, Cham. https://doi.org/10.1007/978-3-030-96229-6_7
    Hsieh, S. W. (2011). Effects of Cognitive Styles on an MSN Virtual Learning Companion System as an Adjunct to Classroom Instructions. Educational Technology & Society, 14(2), 161–174.
    Huang, T.-R., Cheng, Y. L., & Rajaram, S. (2024). Unavoidable social contagion of false memory from robots to humans. American Psychologist, 79(2), 285–298. https://doi.org/10.1037/amp0001230
    Hughes, C., Costley, J., & Lange, C. (2018). The effects of self-regulated learning and cognitive load on beginning to watch and completing video lectures at a cyber-university. Interactive Technology and Smart Education, 15(3), 220–237. https://doi.org/10.1108/ITSE-03-2018-0018
    Ijiga P. A. (2014). Effect of Modes of Video Presentation of Metacognitive Strategies on Secondary School Students’ Achievement in Reading Comprehension in North Central Nigeria. Journal of Education and Vocational Research, 5(4), 216–227. https://doi.org/10.22610/jevr.v5i4.171
    Kanbach, D. K., Heiduk, L., Blueher, G., Schreiter, M., & Lahmann, A. (2023). The GenAI is out of the bottle: Generative artificial intelligence from a business model innovation perspective. Review of Managerial Science, 18, 1189-1220. https://doi.org/10.1007/s11846-023-00696-z
    Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for Language Teaching and. Learning. RELC Journal, 54(2), 537–550. https://doi.org/10.1177/00336882231162868
    Kulkarni, A., Chu, S. L., Sharma, N., & Sathe, S. (2022). Interest-Based Learning through a. Contextualizing Chatbot for Video-Based Online Learning Platforms. 2022 International Conference on Advanced Learning Technologies (ICALT), 66–70. https://doi.org/10.1109/ICALT55010.2022.00027
    Kumari, V., Gosavi, C., Sharma, Y., & Goel, L. (2022). Domain-Specific Chatbot Development Using the Deep Learning-Based RASA Framework. In H. Sharma, V. Shrivastava, K. Kumari Bharti, & L. Wang (Eds.), Communication and Intelligent Systems (pp. 883–896). Springer Nature. https://doi.org/10.1007/978-981-19-2130-8_69
    Kuo, Y.-C., & Chen, Y.-A. (2023). The impact of chatbots using concept maps on correction outcomes–a case study of programming courses. Education and Information Technologies, 28(7), 7899–7925. https://doi.org/10.1007/s10639-022-11506-6
    Li, L. Y. (2019). Effect of Prior Knowledge on Attitudes, Behavior, and Learning Performance in Video Lecture Viewing: International Journal of Human-Computer Interaction. International Journal of Human-Computer Interaction, 35(4/5), 415–426. https://doi.org/10.1080/10447318.2018.1543086
    Lin, Y. T., & Chen, C. M. (2019). Improving effectiveness of learners’ review of video lectures by using an attention-based video lecture review mechanism based on brainwave signals. Interactive Learning Environments, 27(1), 86–102. https://doi.org/10.1080/10494820.2018.1451899
    Long, O. A. H. O., Halim, N. D. A., & Hanid, M. F. A. (2023). A Review on The Use of Video in Education: Advantages and Disadvantages. Innovative Teaching and Learning Journal, 7(2), Article 2. https://doi.org/10.11113/itlj.v7.132
    Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact. academia and libraries? Library Hi Tech News, 40(3), 26–29. https://doi.org/10.1108/LHTN-01-2023-0009
    Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science, 38(6), 937–947. https://doi.org/10.1287/mksc.2019.1192
    Mahmoodi, M. H., Kalantari, B., & Ghaslani, R. (2014). Self-Regulated Learning (SRL), Motivation and Language Achievement of Iranian EFL Learners. Procedia - Social and Behavioral Sciences, 98, 1062–1068. https://doi.org/10.1016/j.sbspro.2014.03.517
    Makhkamova, O., Lee, K.-H., Do, K., & Kim, D. (2020). Deep Learning-Based Multi-Chatbot Broker for Q&A Improvement of Video Tutoring Assistant. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 221–224. https://doi.org/10.1109/BigComp48618.2020.00-71
    Mattioli, J., Pedroza, G., Khalfaoui, S., & Leroy, B. (2022). Combining Data-Driven and Knowledge-Based AI Paradigms for Engineering AI-Based Safety-Critical Systems. Workshop on Artificial Intelligence Safety (SafeAI). https://hal.science/hal-03622260
    Meseguer-Martinez, A., Ros-Galvez, A., & Rosa-Garcia, A. (2017). Satisfaction with online. teaching videos: A quantitative approach. Innovations in Education and Teaching International, 54(1), 62–67. https://doi.org/10.1080/14703297.2016.1143859
    Mok, M. M. C., Lung, C. L., Cheng, D. P. W., Cheung, R. H. P., & Ng, M. L. (2006). Self‐assessment in higher education: Experience in using a metacognitive approach in five case studies. Assessment & Evaluation in Higher Education, 31(4), 415–433. https://doi.org/10.1080/02602930600679100
    Mondal, S., Das, S., & Vrana, V. G. (2023). How to Bell the Cat? A Theoretical Review of. Generative Artificial Intelligence towards Digital Disruption in All Walks of Life. Technologies, 11(2), Article 2. https://doi.org/10.3390/technologies11020044
    Mutlu, M., & Temiz, B. K. (2013). Science Process Skills of Students Having Field Dependent and Field Independent Cognitive Styles. Educational Research and Reviews, 8(11), 766–776.
    Navarro, R., Vega, V., Bayona, H., Bernal, V., & Garcia, A. (2023). Relationship between technology acceptance model, self-regulation strategies, and academic self-efficacy with academic performance and perceived learning among college students during remote education. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1227956
    Nawani, J., Kotzebue, L., Rixius, J., Graml, M., & Neuhaus, B. J. (2018). Teachers’ Use of Focus Questions in German Biology Classrooms: A Video-based Naturalistic Study. International Journal of Science and Mathematics Education, 16(8), 1431–1451. https://doi.org/10.1007/s10763-017-9837-z
    Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). Empowering student self-regulated learning and science education through ChatGPT: A pioneering pilot study. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13454
    Nicol, D. J., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218. https://doi.org/10.1080/03075070600572090
    Ogle, D. M. (1986). K-W-L: A Teaching Model That Develops Active Reading of Expository Text. The Reading Teacher, 39(6), 564–570.
    Opara Emmanuel Chinonso, Adalikwu Mfon-Ette Theresa, Tolorunleke Caroline Aduke (2023). ChatGPT for Teaching, Learning and Research: Prospects and Challenges. Glob Acad J Humanit Soc Sci; 5(2), 33-40.
    OpenAI. (2022). New GPT-3 capabilities: Edit & insert. (2022). Retrieved October 8, 2023, from. https://openai.com/blog/gpt-3-edit-insert
    OpenAI. (2023). GPT-4 Technical Report. arXiv.Org. https://arxiv.org/abs/2303.08774v3
    OpenAI. (2023). What is ChatGPT?. https://help.openai.com/en/articles/6783457-what-is-chatgpt
    Park, K., Mott, B. W., Min, W., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2019). Generating Educational Game Levels with Multistep Deep Convolutional Generative Adversarial Networks. 2019 IEEE Conference on Games (CoG), 1–8. https://doi.org/10.1109/CIG.2019.8848085
    Pintrich, P., Smith, D., Duncan, T., & Mckeachie, W. (1991). A Manual for the Use of the. Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor. Michigan, 48109, 1259.
    Prather, J., Becker, B. A., Craig, M., Denny, P., Loksa, D., & Margulieux, L. (2020). What Do We Think We Think We Are Doing? Metacognition and Self-Regulation in Programming. Proceedings of the 2020 ACM Conference on International Computing Education Research, 2–13. https://doi.org/10.1145/3372782.3406263
    Qadir, J. (2022). Engineering Education in the Era of ChatGPT: Promise and Pitfalls of Generative AI for Education. TechRxiv. https://doi.org/10.36227/techrxiv.21789434.v1
    Radford, A., Narasimhan, K., Salimans, T. & Sutskever, I. (2018). Improving language. understanding by generative pre-training.
    Rahman, A. M., Mamun, A. A., & Islam, A. (2017). Programming challenges of chatbot: Current and future prospective. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 75–78. https://doi.org/10.1109/R10-HTC.2017.8288910
    Sablic, M., Mirosavljevic, A., & Skugor, A. (2021). Video-Based Learning (VBL)—Past, Present and Future: An Overview of the Research Published from 2008 to 2019. Technology, Knowledge and Learning, 26(4), 1061–1077. https://doi.org/10.1007/s10758-020-09455-5
    Sabourin, J., Shores, L. R., Mott, B. W., & Lester, J. C. (2012). Predicting Student Self-regulation Strategies in Game-Based Learning Environments. In S. A. Cerri, W. J. Clancey, G. Papadourakis, & K. Panourgia (Eds.), Intelligent Tutoring Systems ,7315, 141–150. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30950-2_19
    Sarrion, E. (2023). Using ChatGPT in Development Projects. In E. Sarrion (Ed.), Exploring the Power of ChatGPT: Applications, Techniques, and Implications (pp. 35–51). Apress. https://doi.org/10.1007/978-1-4842-9529-8_5
    Seo, K., Dodson, S., Harandi, N. M., Roberson, N., Fels, S., & Roll, I. (2021). Active learning with online video: The impact of learning context on engagement. Computers & Education, 165, 104132. https://doi.org/10.1016/j.compedu.2021.104132
    Sharma, R.K & Joshi, M. (2020). An Analytical Study and Review of open source Chatbot framework, Rasa. International Journal of Engineering Research & Technology, 9(6). https://doi.org/10.17577/IJERTV9IS060723
    Shi, L., & Cheng, E. C. K. (2020). Developing metacognitive teaching in Chinese language through conducting lesson study in Shanghai. International Journal for Lesson & Learning Studies, 10(1), 75–88. https://doi.org/10.1108/IJLLS-09-2020-0065
    Singla, A. (2023). Evaluating ChatGPT and GPT-4 for Visual Programming. Proceedings of the 2023 ACM Conference on International Computing Education Research , 2, 14–15. https://doi.org/10.1145/3568812.3603474
    Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862. https://doi.org/10.1016/j.compedu.2020.103862
    Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., Radford, A., Krueger, G., Kim, J. W., Kreps, S., McCain, M., Newhouse, A., Blazakis, J., McGuffie, K., & Wang, J. (2019). Release Strategies and the Social Impacts of Language Models (arXiv:1908.09203). arXiv. https://doi.org/10.48550/arXiv.1908.09203
    Song, H. s., Kalet, A. l., & Plass, J. l. (2016). Interplay of prior knowledge, self-regulation and motivation in complex multimedia learning environments. Journal of Computer Assisted Learning, 32(1), 31–50. https://doi.org/10.1111/jcal.12117
    Souza, R. T. M. P. de, Silva, M. dos S. B. da, Barbato, D. M. L., de Guzzi, M. E. R., & Cláudia Kasseboehmer, A. (2022). Motivation to learn chemistry: A thorough analysis of the CMQ-II within the Brazilian context. Chemistry Education Research and Practice, 23(4), 799–810. https://doi.org/10.1039/D2RP00107A
    Steels, L., & Lopez de Mantaras, R. (2018). The Barcelona declaration for the proper development and usage of artificial intelligence in Europe. AI Communications, 31(6), 485–494. https://doi.org/10.3233/AIC-180607
    Sun, J. C. Y., & Rueda, R. (2012). Situational interest, computer self-efficacy and self-regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191–204. https://doi.org/10.1111/j.1467-8535.2010.01157.x
    Szabo, S. (2006). KWHHL: A Student-Driven Evolution of the KWL. American Secondary Education, 34.
    Taub, M., Azevedo, R., Bouchet, F., & Khosravifar, B. (2014). Can the use of cognitive and metacognitive self-regulated learning strategies be predicted by learners’ levels of prior knowledge in hypermedia-learning environments? Computers in Human Behavior, 39, 356–367. https://doi.org/10.1016/j.chb.2014.07.018
    Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1). Scopus. https://doi.org/10.1186/s40561-023-00237-x
    Tse, W. S., Choi, L. Y. A., & Tang, W. S. (2019). Effects of video-based flipped class instruction. on subject reading motivation. British Journal of Educational Technology, 50(1), 385–398. https://doi.org/10.1111/bjet.12569
    Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. https://doi.org/10.1006/ijhc.2002.1017
    Walsh, A. (2022). Gaining Insight Into Students’ Difficulties Using KWL. https://research.thea.ie/handle/20.500.12065/4127
    Wehmeyer, M. L., Palmer, S. B., Shogren, K., Williams-Diehm, K., & Soukup, J. H. (2013). Establishing a causal relationship between intervention to promote self-determination and enhanced student self-determination. The Journal of Special Education, 46(4), 195–210. https://doi.org/10.1177/0022466910392377
    Windiatmoko, Y., Rahmadi, R., & Hidayatullah, A. F. (2021). Developing Facebook Chatbot Based on Deep Learning Using RASA Framework for University Enquiries. IOP Conference Series. Materials Science and Engineering, 1077(1). https://doi.org/10.1088/1757-899X/1077/1/012060
    Winters, F. I., Greene, J. A., & Costich, C. M. (2008). Self-Regulation of Learning within Computer-based Learning Environments: A Critical Analysis. Educational Psychology Review, 20(4), 429–444. https://doi.org/10.1007/s10648-008-9080-9
    Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research, 47(1), 1–64. https://doi.org/10.2307/1169967
    Wu, Y.-T., Chai, C.-S., & Wang, L.-J. (2022). Exploring secondary school teachers’ TPACK for video-based flipped learning: The role of pedagogical beliefs. Education and Information Technologies, 27(6), 8793–8819. https://doi.org/10.1007/s10639-022-10977-x
    Yin, J., Goh, T.-T., Yang, B., & Xiaobin, Y. (2021). Conversation Technology With Micro-Learning: The Impact of Chatbot-Based Learning on Students’ Learning Motivation and Performance. Journal of Educational Computing Research, 59(1), 154–177. https://doi.org/10.1177/0735633120952067
    Yu, Z., & Gao, M. (2022). Effects of Video Length on a Flipped English Classroom. Sage Open, 12(1). https://doi.org/10.1177/21582440211068474
    Zahir, S., Roy, P. S., Ridita, H. T., & Hossain, T. (2023). Transformer vs. RASA model: A thorough attempt to develop conversational Artificial Intelligence to provide automated services to university disciples [Thesis, Brac University]. http://dspace.bracu.ac.bd:8080/xmlui/handle/10361/19975
    Zainuddin, Z., Haruna, H., Li, X., Zhang, Y., & Chu, S. K. W. (2019). "A systematic review of. flipped classroom empirical evidence from different fields: What are the gaps and future trends? " On the Horizon, 27(2), 72–86. https://doi.org/10.1108/OTH-09-2018-0027
    Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15–27. https://doi.org/10.1016/j.im.2005.01.004
    Zhang, Y., Paquette, L., Bosch, N., Ocumpaugh, J., Biswas, G., Hutt, S., & Baker, R. S. (2022). The evolution of metacognitive strategy use in an open-ended learning environment: Do prior domain knowledge and motivation play a role? Contemporary Educational Psychology, 69, 102064. https://doi.org/10.1016/j.cedpsych.2022.102064
    Zhu, I. C., Sun, M., Luo, J., Li, T., & Wang, M. (2023). How to harness the potential of. ChatGPT in education? Knowledge Management & E-Learning: An International Journal, 15(2), 133–152. https://doi.org/10.34105/j.kmel.2023.15.008
    Zimmerman, B. (1990). Self-Regulated Learning and Academic Achievement: An Overview. Educational Psychologist, 25, 3–17. https://doi.org/10.1207/s15326985ep2501_2
    Zimmerman, B.J., Schunk, D.H.(1989).Self-regulated learning and academic achievement: Theory, research, and practice, Springer, New York.
    Description: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    110155007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110155007
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Library, Information and Archival Studies] Theses

    Files in This Item:

    File Description SizeFormat
    500701.pdf6673KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback