English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52188261      Online Users : 111
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/152818
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152818


    Title: 具有延遲時間的分支費波納契數列
    k-Delayed Branching Fibonacci Sequences
    Authors: 劉軒亦
    LIU, XUAN-YI
    Contributors: 洪芷漪
    Hong, Jyy-I
    劉軒亦
    LIU, XUAN-YI
    Keywords: 具延遲時間的費波納契數列
    費波納契數列
    分支過程
    K-delayed Fibonacci sequences
    Fibonacci sequences
    Branching process
    Date: 2024
    Issue Date: 2024-08-05 14:11:48 (UTC+8)
    Abstract: 考慮一個延遲時間為 k 且每次生產數為服從同一分布的獨立隨機變數的分支費波那契數列,在本文中我們討論在時間趨近於無窮大時,兔子的總對數會成指數成長且相鄰兩代間個數的比值會趨近於定值,而此定值滿足某一由兔子總對數所對應的疊代式所產生的方程式。
    Consider a branching Fibonacci sequence with delayed time k time units and a random production quantity each time. In this article, we discuss that, when time approaches infinity, the ratio of the numbers of pairs of rabbits between two successive time points will approach a constant value.
    Reference: [1] K. B. Athreya and P.E. Ney. Branching Processes. Courier Corporation, 2004.
    [2] A. F. Horadam. A Generalized Fibonacci Sequence. Amer. Math. Monthly 68 (1961), 455-459.
    [3] M. Feinberg. Fifonacci-Tribonacci. Fibonacci Quarterly 1.3 (1963), 71-74.
    [4] C. C. Yalarigi. Properties of the Tribonacci Numbers. Fibonacci Quarterly 15.3 (1977), 193-200.
    [5] M. E. Waddill. The Tetranacci Sequence and Its Generalizations. Fibonacci Quarterly 30.1 (1992), 9-20.
    [6] S. Falcon and A. Plaza. On the Fibonacci k-numbers. Chaos, Solitons & Fractols, 32(5) (2007), 1615-1624.
    [7] S. Falcon. Generalized -Fibonacci Numbers. Gen. Math. Notes, vol.25, No.2.(2014),148-158.
    [8] C. C. Heyde. On a probabilistic analogue of the Fibonacci sequence. J. Appl. Prob.17. (1980). 1079-1082.
    [9] C. C. Heyde. On Fibonacci (or lagged Bienaymé-Galton-Watson) branching processes. J. Appl. Prob.18. (1981). 583-591.
    [10] J. B. MacQueen. A linear extension of the martingale convergence theorem. The Annals of Probability, vol.1, No.2. (1973). 263-271.
    Description: 碩士
    國立政治大學
    應用數學系
    107751003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107751003
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100301.pdf1265KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback