Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/152696
|
Title: | 虛擬電廠聚合商營運模式之影響因素 Impact Factors of Business Model of the Virtual Power Plant Aggregator |
Authors: | 鄭仲凱 Cheng, Chung-Kai |
Contributors: | 許志義 吳學良 Hsu, Jyh-Yih Wu, Hsueh-Liang 鄭仲凱 Cheng, Chung-Kai |
Keywords: | 虛擬電廠 虛擬電廠聚合商 分散式能源資源 商業畫布 PESTLE分析 永續能源 Virtual Power Plant VPP Aggregator Distributed Energy Resources Business Model Canvas PESTLE Analysis Sustainable Energy |
Date: | 2024 |
Issue Date: | 2024-08-05 13:35:59 (UTC+8) |
Abstract: | 本研究主要探討虛擬電廠(Virtual Power Plant, VPP)聚合商之營運模式及 其經濟效益。隨著全球能源轉型的推進,虛擬電廠作為整合分散能源資源 (Distributed Energy Resources, DERs)的重要工具,逐漸受到廣泛關注。本論 文運用商業畫布(Business Model Canvas)與PESTLE分析法,深入分析國內外 虛擬電廠聚合商的商業模式,並通過相關文獻與案例研究,提供對虛擬電廠發 展的全方位理解。 透過商業畫布系統化地描述虛擬電廠聚合商的價值主張、客戶群體、通 路、顧客關係、收益流、關鍵資源、關鍵活動、關鍵合作夥伴和成本結構。九 大要素共同構成虛擬電廠聚合商的核心運營模式。同時,本研究選取數個國內 外的虛擬電廠案例,包括歐洲、美國及亞洲的代表性虛擬電廠聚合商,進行深 入分析,探討在不同市場環境下的成功要素和挑戰。 PESTLE分析法則透過政治、經濟、社會、技術、法律和環境六個面向,評 估影響虛擬電廠發展的外部因素。藉由此方法,能夠識別出促進或限制虛擬電 廠發展的關鍵因素。例如,政策支持和市場機制的成熟度在不同地區存在顯著 差異,直接影響虛擬電廠的商業化進程。 本研究發現:虛擬電廠聚合商的商業模式在不同市場環境中具有多樣性和 適應性。例如,在歐洲市場,嚴格的環保法規和高比例的永續能源促使虛擬電 廠迅速發展,而在台灣等新興市場,政策支持和市場機制仍屬萌芽階段,尚待 進一步完善之。透過對國內外案例的比較,本研究發現成功的虛擬電廠聚合商 能夠靈活應對電源結構迅速改變為間歇性太陽能與風力發電的外在挑戰,積極 參與市場機制建立,並利用技術創新提升運營效率。 This thesis mainly explores the business models and economic benefits of Virtual Power Plant (VPP) aggregators. With the advancement of the global energy transition, VPPs, as an essential tool for integrating Distributed Energy Resources (DERs), have been receiving widespread attention. This paper employs the Business Model Canvas and PESTLE analysis to deeply analyze the business models of domestic and international VPP aggregators and, through relevant literature and case studies, provides a comprehensive understanding of the development of VPPs. The Business Model Canvas systematically describes the value propositions, customer segments, channels, customer relationships, revenue streams, key resources, key activities, key partners, and cost structures of VPP aggregators. These nine elements together constitute the core operational model of VPP aggregators. At the same time, this study selects several domestic and international VPP cases, including representative VPP aggregators in Europe, the United States, and Asia, for in-depth analysis, exploring the success factors and challenges in different market environments. The PESTLE analysis assesses the external factors influencing the development of VPPs through six dimensions: Political, Economic, Social, Technological, Legal, and Environmental. This method helps identify the key factors that promote or restrict the development of VPPs. For example, policy support and the maturity of market mechanisms vary significantly across different regions, directly affecting the commercialization process of VPPs. The thesis finds that the business models of VPP aggregators exhibit diversity and adaptability in different market environments. For instance, in the European market, strict environmental regulations and a high proportion of renewable energy have prompted the rapid development of VPPs. In emerging markets like Taiwan, policy support and market mechanisms are still in the nascent stages and require further improvement. Through a comparison of domestic and international cases, the study discovers that successful VPP aggregators can flexibly respond to external challenges, such as the rapid shift of power structures to intermittent solar and wind energy, actively participate in market mechanism establishment, and leverage technological innovations to enhance operational efficiency. |
Reference: | [1] 許志義、黃俊凱 (2016),「論電力自由化下虛擬電廠之商業模式:德國 Harz 示範計畫之經驗及對我國之政策意涵」。台灣經濟論衡,第 14 卷第 2 期,台北。 [2] 許志義、洪穎正 (2016),「電力需求面管理與用戶群代表法制革新:先進國家案例及其對臺灣之政策意涵」。台灣能源期刊,第 3 卷第 2 期,頁 137-153,台北。 [3] 許志義、鍾晧晨(2017),「虛擬電廠參與者之成本效益分析與政策推介」。《台灣能源期刊》,第 4 卷第 2 期〔民 106.06〕,頁 145-172,台北。 [4] 許志義、林振玄 (2021),智慧家庭能源管理系統營運模式及其經濟分析: 電能產消者 vs.產消儲電者。台灣能源期刊,第八卷,第三期,頁 255-276。 [5] 許志義、陳俐妏、黃鈺愷、陳彥豪、楊宏澤 (2016)。虛擬電廠先進國家發展趨勢及對台灣之政策意涵。台電工程月刊,第 817 期。 [6] 陳聖岳、許志義(2023),「聚合商電動巴士到電網(B2G)商業模式分析」。 《台灣能源期刊》,第 10 卷第 3 期〔民 112.12〕,頁 367-385,台北。 [7] Anderson, P., Poulsen, B., Decker, M., et al. (2008). Evaluation of a generic virtual power plant framework using service oriented architecture. 2nd IEEE International Conference on Power and Energy, Baharu, Malaysia: IEEE, 1212-1217. [8] Asmus, P. (2010). Microgrids, virtual power plants and our distributed energy future. The Electricity Journal, 23(10), 72-82. [9] Behi, R. (2020). Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study. Renewable Energy, 145, 1245-1258. [10] Christodoulou, A., & Cullinane, K. (2019). Identifying the main opportunities and challenges from the implementation of a port energy management system: A SWOT/PESTLE analysis. Sustainability, 11(21), 6046. [11] Do Thi, H. T., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of desalination technologies using renewable energy sources with life cycle, PESTLE, and multi-criteria decision analyses. Water, 13(21), 3023. [12] Evans, S., Vladimirova, D., Holgado, M., Van Fossen, K., Yang, M., Silva, E. A., & Barlow, C. Y. (2017). Business model innovation for sustainability: Towards a unified perspective for creation of sustainable business models. Business Strategy and the Environment, 26(5), 597-608. [13] Gao, X., Li, Y., & Wang, J. (2024). Review of Virtual Power Plant Operations: Resource Coordination and Multidimensional Interaction. Energy Reports, 10, 234-250. [14] Gazijahani, F. S., & Salehi, J. (2020). IGDT-based complementarity approach for dealing with strategic decision making of price-maker VPP considering demand flexibility. IEEE Transactions on Industrial Informatics, 16, 2212-2220. [15] Goia, M. (2022). Virtual Power Plant Optimization in Smart Grids: A Narrative Review. Energy Systems, 12, 763-779. [16] Hamwi, M., Lizarralde, I., & Legardeur, J. (2021). Demand Response Business Model Canvas: A Tool for Flexibility Creation in the Electricity Markets. Energy Policy, 151, 112140. [17] Heydarian-Forushani, E. (2023). A Proactive Strategy for Virtual Power Plants Including Multiple Private Owners Equipped with Energy Storages. Sustainable Energy, Grids and Networks, 30, 100542. [18] Hussain, A., Kim, C.-H., & Mehdi, A. (2021). A comprehensive review of intelligent islanding schemes and feature selection techniques for distributed generation system. IEEE Access, 9, 146603-146624. [19] Iria, J., Soares, F., & Matos, M. (2023). An Energy-as-a-Service Business Model for Aggregators of Prosumers. Energy, 237, 121587. [20] Kumagai, J. (2012). Virtual power plants, real power. IEEE Spectrum, 49(3), 13-14. [21] Lee, C. H., Chang, M. H., & Tsai, Y. C. (2022). Distributed Energy Strategy Using Renewable Energy Transformation in Kinmen Island: Virtual Power Plants that Take the Military Camps as the Mainstay. Renewable and Sustainable Energy Reviews, 153, 111711. [22] Li, Z., Liu, X., & Wang, Y. (2019). Review on Virtual Power Plants. Renewable and Sustainable Energy Reviews, 89, 453-463. [23] Nikonowicz, I., & Milewski, J. (2012). Virtual power plant general review: structure, application and optimization. Journal of Power Technologies, 92(3), 135-149. [24] Osterwalder, A., Pigneur, Y., & Tucci, C. (2005). Clarifying business models: Origins, present, and future of the concept. Communications of the Association for Information Systems. [25] Pudjianto, D., Ramsay, C., & Strbac, G. (2007). A Review on the Virtual Power Plant: Components and Operation Systems. Energy Policy, 35, 617-629. [26] Ropuszyńska-Surma, E. (2018). The Virtual Power Plant – A Review Of Business Models. Journal of Cleaner Production, 195, 1255-1266. [27] Ruan, Y., Zhang, B., & Xie, Y. (2024). Data-driven Energy Management of Virtual Power Plants: A Review. Energy, 237, 121587. [28] Shakeel, J., Mardani, A., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2020). Anatomy of sustainable business model innovation. Journal of Cleaner Production, 261, 121201. [29] Tan, Z., Wu, Y., & Chen, C. (2022). Business Model of Virtual Power Plant Considering Uncertainty and Different Levels of Market Maturity. Applied Energy, 293, 116949. [30] Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Anvari-Moghaddam, A., & Siano, P. (2020). Risk-averse probabilistic framework for scheduling of virtual power plants considering demand response and uncertainties. International Journal of Electric Power and Energy Systems, 121, 106126. [31] Vardopoulos, I., Kontokosta, C., & Milionis, A. (2021). An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Sustainable Cities and Society, 64, 102508. [32] Venegas-Zarama, A., Sepulveda, J., & Maldonado, M. (2022). A Review of the Evolution and Main Roles of Virtual Power Plants as Key Stakeholders in Power Systems. Renewable Energy, 155, 1055-1070. [33] Wang, J., Wang, J., & Li, Y. (2019). A Review on Virtual Power Plant Concept, Application and Challenges. Energy, 197, 117039. [34] Zheng, Y., Yu, H., Shao, Z., & Jian, L. (2020). Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets. Applied Energy, 280, 115977. [35] 台灣能源數位轉型產學技術聯盟官網 https://www.taedt.com/ [36] 行政院國家永續發展委員會 (2024 年 5 月 29 日),認識淨零轉型。 https://ncsd.ndc.gov.tw/Fore/nsdn/about0/introduction [37] 行政院新聞傳播處 (2023 年 3 月 14 日),臺灣 2050 淨零排放。 https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1 [38] 經濟部能源署 (2016),推動能源轉型「展綠、增氣、減煤、非核」。 https://www.moea.gov.tw/MNS/populace/Policy/Policy.aspx?menu_id=32800&policy_id=9 [39] 許志義 (2023 年 10 月 17 日),再論虛擬電廠的轉型定位與發展戰略。 https://www.economic-news.tw/comment_content.php?id=433 [40] 桃園市政府能源資訊平台 (2023 年 9 月 14 日),太陽光電設置費用試算。 https://greenenergy.tycg.gov.tw/settingfee-calculation [41] 工研院 (2024 年 5 月 13 日),工研院攜手國內外產學研加速虛擬電廠產業化 強化臺灣電網韌性。 https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036276263153520257&MGID=113051312243163778 [42] 經濟日報 (2022 年 5 月 18 日),最大聚合商 Enel X 登台 6 年攜手 Gogoro 總座陳威廷:現在時機正好。 https://money.udn.com/money/story/122807/6224467 [43] LINE Today (2022 年 8 月 21 日),「藏電於民」全球能源新趨勢虛擬電廠。 https://today.line.me/tw/v2/article/2D1oXjO [44] 經濟日報 (2023 年 12 月 27 日) 聚盛能源協助大學醫學中心 1.3MW 參與電力交易平台。 https://money.udn.com/money/story/11799/7668095 [45] 桃園市政府能源資訊平台(2023 年 9 月 14 日),太陽光電設置費用試算。 https://greenenergy.tycg.gov.tw/settingfee-calculation [46] Next Kraftwerke (2024),Virtual Power Plant: Case Studies https://www.next-kraftwerke.com/vpp/case-studies [47] Next Kraftwerke(2023),Virtual Power Plant: The Power of Many https://www.next-kraftwerke.com/ [48] Energy & Meteo (2024),Customer Projects https://www.energymeteo.com/customers/customer_projects/ [49] Tracxn (2024),Top Virtual Power Plant Startups https://tracxn.com/d/trending-themes/startups-in-virtual-power-plant/__vAL5JLAufirCrZMyP6X7t6nR6thGXzqyB3tXWqbaH3M [50] Institute for energy research, IER (2020) The Environmental Impact of Lithium Batteries https://www.instituteforenergyresearch.org/renewable/the-environmental-impact-of-lithium-batteries/ |
Description: | 碩士 國立政治大學 經濟學系 110258045 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110258045 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
804501.pdf | | 2661Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|