政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152684
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52054765      Online Users : 635
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152684


    Title: 以深度學習藝術影像建立虛擬創客空間
    Building a virtual makerspace with deep learning based art images
    Authors: 黃怜樺
    Huang, Ling-Hua
    Contributors: 羅崇銘
    Lo, Chung-Ming
    黃怜樺
    Huang, Ling-Hua
    Keywords: 生成式人工智慧
    大學圖書館
    虛擬生成創客空間
    Generative artificial intelligence
    University libraries
    Virtual generative makerspaces
    Date: 2024
    Issue Date: 2024-08-05 13:32:56 (UTC+8)
    Abstract: 大學圖書館是大學的心臟,支援學習和學術研究,受到學習與教學模式的改變,圖書館建立各種多元的學習空間來滿足師生需求,如資訊共享空間、學習共享空間、虛擬學習空間與創客空間等。創客空間是實現創客精神理念的場所,創客精神鼓勵跨領域學習,強調創造性的思維與解決問題的重要性。傳統的實體創客空間提供3D列印的設備,但受到空間與開館時間的限制而無法隨時提供創作服務,雖然延伸發展出虛擬創客空間,僅僅是提供線上會議或討論的形式,並非虛擬線上的創作。因此大學圖書館應建立一個提供虛擬創作平台的虛擬生成創客空間,結合實體創客空間與線上創作平台,提供生成式人工智慧的工具以創新方法滿足學生多元創作的需求,以Stable Diffusion為例,學生利用文字描述就能生成各種影像,還可搭配不同的外掛工具來調整影像的風格或變化,鼓勵學生發揮創意、實現創作的想法,利用其進行研究或完成各種學習活動。
    為了評估「虛擬生成創客空間與創客精神之間的關聯」,以及對「虛擬生成創客空間使用性」的看法,本研究針對大學的學生和教職員為進行問卷調查,使用Google表單進行線上填答,並透過Facebook進行問卷發放,回收100份有效問卷。根據問卷分析,問卷的Cronbach's Alpha值為0.852,表示問卷具有一致性與信度。問卷的KMO值為0.855,以及Bartlett的球形檢定顯著性小於0.001,代表問卷適合進行因素分析,主成分分析顯示兩個主成分能夠解釋64.644%的變異性,使用李克特量表進行量測,虛擬生成創客空間與創客精神關聯的同意度平均值為4.46,虛擬生成創客空間使用性的同意度平均值為4.68,可以確定問卷能有效反映研究內容。研究結果也發現,無論是性別、單位與身份,都不會影響受訪者對於虛擬生成創客空間的看法。因此,研究結果可以作為未來大學圖書館建立虛擬生成創客空間之參考。
    The university library is the heart of the university, supporting learning and academic research. With changes in learning and teaching modes, libraries have established various diverse learning spaces to meet the needs of teachers and students, such as information commons, virtual learning commons, and makerspaces, etc. The makerspace is a place to fulfill the maker spirit, which encourages interdisciplinary learning and emphasizes the importance of creative thinking and problem-solving. The traditional physical makerspaces provide 3D printing, but they cannot provide creative services at any time. Even though virtual makerspaces have been developed, they only offer online meetings or discussions, not virtually online creations. Therefore, the university library should establish a virtual generative makerspace that combines a physical makerspace with an online creation platform, and provides generative AI tools to innovatively meet the diverse creation needs of students. For instance, with Stable Diffusion, students can use prompt to generate different images or variations with different tools, encouraging students to demonstrate creativity, implement creative ideas, use it for research, or complete various learning activities.
    In order to evaluate the 'relationship between the virtual generative makerspace and the maker spirit,' and the 'usability of the virtual generative makerspace,' this study conducted a questionnaire survey on university students and faculty members. The online questionnaires were filled out through Google Forms and distributed through Facebook, and 100 valid questionnaires were collected. According to the questionnaire analysis, the Cronbach's Alpha of the questionnaire was 0.852, indicating that the questionnaire has consistency and reliability. The KMO of the questionnaire was 0.855, and the significance of Bartlett's test was less than 0.001, indicating that the questionnaire is suitable for factor analysis. Principal component analysis showed that the two main components could explain 64.644% of the variability. The Likert scale was used for measurement. The average degree of agreement of the connection between the virtual generative makerspace and maker spirit was 4.46, and the average degree of agreement of the usability of the virtual generative makerspace was 4.68. It can be confirmed that the questionnaire can effectively reflect the research content. The research results also found that gender, unit, and identity do not affect the respondents' views on the virtual generative makerspace. Therefore, the research results can be used as a reference for university libraries to establish a virtual generative makerspace in the future.
    Reference: Albert, G. (2021). The simple secret to better painting : how to immediately improve your art with the one rule of composition ([New edition] ed.). Echo Point Books & Media Brattleboro, Vermont.
    Allison, D., DeFrain, E., Hitt, B. D., & Tyler, D. C. (2019). Academic library as learning space and as collection: A learning commons' effects on collections and related resources and services. The Journal of Academic Librarianship, 45(3), 305-314. https://doi.org/10.1016/j.acalib.2019.04.004
    Anderson, J. (2019). The use of the University of Tartu Art Museum collection in teaching between 1803 and 1918. History of Education, 48(5), 575-590. https://doi.org/10.1080/0046760X.2019.1615560
    Andrews, M. E., Borrego, M., & Boklage, A. (2021). Self-efficacy and belonging: the impact of a university makerspace. International Journal of Stem Education, 8(1), Article 24. https://doi.org/10.1186/s40594-021-00285-0
    Anonymous. (2011, 2011 Feb 12). Leaders: Print me a Stradivarius. The Economist, 398(8720), 11.
    Arango, L., Singaraju, S. P., & Niininen, O. (2023). Consumer Responses to AI-Generated Charitable Giving Ads. Journal of Advertising, 1-18. https://doi.org/10.1080/00913367.2023.2183285
    Barnhardt, C., Cotter, S. A., Mitchell, G. L., Scheiman, M., & Kulp, M. T. (2012). Symptoms in children with convergence insufficiency: before and after treatment. Optometry and vision science: official publication of the American Academy of Optometry, 89(10), 1512.
    Beagle, D. (1999). Conceptualizing an Information Commons [Article]. Journal of Academic Librarianship, 25(2), 82-89. https://doi.org/10.1016/s0099-1333(99)80003-2
    Beaumont, R. (2022). LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-MODAL DATASETS. LAION. Retrieved 3 March from https://laion.ai/blog/laion-5b/
    Beavers, K., Cady, J. E., Jiang, A., & McCoy, L. (2019). Establishing a maker culture beyond the makerspace. Library Hi Tech, 37(2), 219-232. https://doi.org/10.1108/lht-07-2018-0088
    Beltzung, B., Pelé, M., Renoult, J. P., & Sueur, C. (2023). Deep learning for studying drawing behavior: A review. Frontiers in Psychology, 14, Article 992541. https://doi.org/10.3389/fpsyg.2023.992541
    Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55(2), 155-162. https://doi.org/10.1016/j.bushor.2011.11.003
    Bieraugel, M., & Neill, S. (2017). Ascending Bloom's Pyramid: Fostering Student Creativity and Innovation in Academic Library Spaces. College & Research Libraries, 78(1), 35-52. https://doi.org/10.5860/crl.78.1.35
    Bryant, J., Matthews, G., & Walton, G. (2009). Academic libraries and social and learning space: A case study of Loughborough University Library, UK. Journal of Librarianship and Information Science, 41(1), 7-18. https://doi.org/10.1177/0961000608099895
    Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv preprint arXiv:2303.04226.
    Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8
    Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1), 60. https://doi.org/10.1186/s40561-023-00269-3
    Chen, C., Wu, Z., Lai, Y., Ou, W., Liao, T., & Zheng, Z. (2023). Challenges and Remedies to Privacy and Security in AIGC: Exploring the Potential of Privacy Computing, Blockchain, and Beyond. arXiv preprint arXiv:2306.00419.
    Chen, Y., & Wu, C. (2017). The hot spot transformation in the research evolution of maker. Scientometrics, 113(3), 1307-1324. https://doi.org/10.1007/s11192-017-2542-4
    Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: a case of ChatGPT and Midjourney. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2023.2253861
    Church, J. (2005). The evolving Information Commons. Library Hi Tech, 23(1), 75-81. https://doi.org/10.1108/07378830510586711
    Cohn, G. (2018, Oct 25). AI Art at Christie’s Sells for $432,500. The New York Times. https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
    Congdon, L. (2019). Find your artistic voice : the essential guide to working your creative magic. Chronicle Books.
    Cox, A. M. (2018). Space and embodiment in informal learning. HIGHER EDUCATION, 75(6), 1077-1090. https://doi.org/10.1007/s10734-017-0186-1
    Croitoru, F. A., Hondru, V., Ionescu, R. T., & Shah, M. (2023). Diffusion Models in Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9), 10850-10869. https://doi.org/10.1109/TPAMI.2023.3261988
    Curry, R. (2022). Insights from a cultural-historical HE library makerspace case study on the potential for academic libraries to lead on supporting ethical-making underpinned by 'Critical Material Literacy'. Journal of Librarianship and Information Science, Article 09610006221104796. https://doi.org/10.1177/09610006221104796
    Davee, S., Regalla, L., & Chang, S. (2015). Makerspaces: Highlights of select literature. https://makered.org/wp-content/uploads/2015/08/Makerspace-Lit-Review-5B.pdf
    de Vicente-Yagüe-Jara, M. I., López-Martínez, O., Navarro-Navarro, V., & Cuéllar-Santiago, F. (2023). Writing, creativity, and artificial intelligence. ChatGPT in the university context. Comunicar, 31(77), 47-57. https://doi.org/10.3916/c77-2023-04
    de Winter*, J. C. F., Dodou*, D., & Wieringa, P. A. (2009). Exploratory Factor Analysis With Small Sample Sizes. Multivariate Behavioral Research, 44(2), 147-181. https://doi.org/10.1080/00273170902794206
    Dehouche, N., & Dehouche, K. (2023). What’s in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon.
    Derevyanko, N., & Zalevska, O. (2023). Comparative analysis of neural networks Midjourney, Stable Diffusion, and DALL-E and ways of their implementation in the educational process of students of design specialities. Scientific Bulletin of Mukachevo State University. Series “Pedagogy and Psychology, 9(3), 36-44.
    Eriksson, E., Heath, C., Ljungstrand, P., & Parnes, P. (2018). Makerspace in school—Considerations from a large-scale national testbed. International Journal of Child-Computer Interaction, 16, 9-15. https://doi.org/10.1016/j.ijcci.2017.10.001
    Farritor, S. (2017). UNIVERSITY-BASED MAKERSPACES: A SOURCE OF INNOVATION. Technology and Innovation, 19(1), 389-395. https://doi.org/10.21300/19.1.2017.389
    Fido, D., Rao, J., & Harper, C. A. (2022). Celebrity status, sex, and variation in psychopathy predicts judgements of and proclivity to generate and distribute deepfake pornography. Computers in Human Behavior, 129, 107141. https://doi.org/https://doi.org/10.1016/j.chb.2021.107141
    Figg, C., Khirwadkar, A., & Welbourn, S. (2020). Making ‘Math Making’ Virtual. Brock Education Journal, 29(2), 30. https://doi.org/10.26522/brocked.v29i2.836
    Foley, C., Darcy, S., Hergesell, A., Almond, B., McDonald, M., Nguyen, L. T., & Morgan-Brett, E. (2023). Extracurricular activities, graduate attributes and serious leisure: competitive sport versus social-cultural clubs in campus life. Leisure Studies, 42(6), 971-988. https://doi.org/10.1080/02614367.2023.2168030
    Fourie, I., & Meyer, A. (2015). What to make of makerspaces: Tools and DIY only or is there an interconnected information resources space? Library Hi Tech, 33(4), 519-525. https://doi.org/10.1108/LHT-09-2015-0092
    Gierdowski, D., & Reis, D. (2015). The MobileMaker: an experiment with a Mobile Makerspace. Library Hi Tech, 33(4), 480-496. https://doi.org/10.1108/lht-06-2015-0067
    Godhe, A.-L., Lilja, P., & Selwyn, N. (2019). Making sense of making: critical issues in the integration of maker education into schools. Technology, Pedagogy and Education, 28(3), 317-328. https://doi.org/10.1080/1475939X.2019.1610040
    Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4), 597-607.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 2672-2680.
    Harley, B., Dreger, M., & Knobloch, P. (2001). The postmodern condition: students, the Web, and academic library services. Reference Services Review, 29(1), 23-32. https://doi.org/10.1108/00907320110366750
    Harris, J., & Cooper, C. (2015). MAKE ROOM FOR A MAKERSPACE. Computers in Libraries, 35(2), 5-9.
    Hessman, T. (2013). Take 5: Q&A with Chuck Hull, Co-Founder, 3D Systems. Industry Week.
    Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840-6851.
    Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
    Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
    Jin, Z., & Song, Z. (2023). Generating coherent comic with rich story using ChatGPT and Stable Diffusion. arXiv preprint arXiv:2305.11067.
    Junjie, L., Jianjing, W., & Zhengfeng, J. (2020). Generative Adversarial Networks GAN Overview. Journal of Frontiers of Computer Science & Technology, 14(1), 1-17. https://doi.org/10.3778/j.issn.1673-9418.1910026
    K, S., & Durgadevi, M. (2021, 8-10 July 2021). Generative Adversarial Network (GAN): a general review on different variants of GAN and applications. 2021 6th International Conference on Communication and Electronics Systems (ICCES),
    Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36.
    Kemp, J. (1994). Art in the library: Should academic libraries manage art? The Journal of Academic Librarianship, 20(3), 162-166. https://doi.org/https://doi.org/10.1016/0099-1333(94)90010-8
    Kietzmann, J., Pitt, L., & Berthon, P. (2015). Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing. Business Horizons, 58(2), 209-215. https://doi.org/10.1016/j.bushor.2014.11.005
    Kim, T. K. (2017). Understanding one-way ANOVA using conceptual figures. kja, 70(1), 22-26. https://doi.org/10.4097/kjae.2017.70.1.22
    Knibbe, J., Grossman, T., & Fitzmaurice, G. (2015, November15–18). Smart makerspace: An immersive instructional space for physical tasks. Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, Madeira, Portugal.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Commun. ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
    Kwon, B.-R., & Lee, J. (2017). What makes a maker: the motivation for the maker movement in ICT [Article]. Information Technology for Development, 23(2), 318-335. https://doi.org/10.1080/02681102.2016.1238816
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
    Lee, U. G., Han, A. R., Lee, J. J., Lee, E. S., Kim, J., Kim, H., & Lim, C. (2023). Prompt Aloud!: Incorporating image-generative AI into STEAM class with learning analytics using prompt data. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12150-4
    Letnikova, G., & Xu, N. (2017). Academic library innovation through 3D printing services. Library Management, 38(4/5), 208-218. https://doi.org/10.1108/LM-12-2016-0094
    Li, H. (2019). Special Section Introduction: Artificial Intelligence and Advertising. Journal of Advertising, 48(4), 333-337. https://doi.org/10.1080/00913367.2019.1654947
    Liang, P. P., Zadeh, A., & Morency, L.-P. (2022). Foundations and recent trends in multimodal machine learning: Principles, challenges, and open questions. arXiv preprint arXiv:2209.03430.
    Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology, 140, 5-53.
    Lindtner, S. (2014). Hackerspaces and the Internet of Things in China: How makers are reinventing industrial production, innovation, and the self. China Information, 28(2), 145-167. https://doi.org/10.1177/0920203x14529881
    Lindtner, S. (2015). Hacking with Chinese Characteristics: The Promises of the Maker Movement against China's Manufacturing Culture. SCIENCE TECHNOLOGY & HUMAN VALUES, 40(5), 854-879. https://doi.org/10.1177/0162243915590861
    Liu, M., & Hu, Y. (2023, 2023//). Application Potential of Stable Diffusion in Different Stages of Industrial Design. Artificial Intelligence in HCI, Cham.
    Liu, V., & Chilton, L. B. (2022). Design Guidelines for Prompt Engineering Text-to-Image Generative Models Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, <conf-loc>, <city>New Orleans</city>, <state>LA</state>, <country>USA</country>, </conf-loc>. https://doi.org/10.1145/3491102.3501825
    Lo Conte, A. (2020). Antipodean Prints: Joseph Burke and the development of the University of Melbourne’s Print Collection. Journal of the Australian Library and Information Association, 69(2), 176-190. https://doi.org/10.1080/24750158.2020.1755924
    Lock, J., Redmond, P., Orwin, L., Powell, A., Becker, S., Hollohan, P., & Johnson, C. (2020). Bridging distance: Practical and pedagogical implications of virtual Makerspaces. Journal of Computer Assisted Learning, 36(6), 957-968. https://doi.org/10.1111/jcal.12452
    Loertscher, D. V. (2015, Oct 2015). The Virtual Makerspace: A New Possibility? Teacher Librarian, 43(1), 50-51,67.
    Loertscher, D. V., & Koechlin, C. (2012, Oct 2012). The Virtual Learning Commons and School Improvement. Teacher Librarian, 40(1), 20-24,24,63.
    Lu, Q., Yao, Y., Xiao, L., Yuan, M., Wang, J., & Zhu, X. (2024). Can ChatGPT effectively complement teacher assessment of undergraduate students’ academic writing? Assessment & Evaluation in Higher Education, 1-18. https://doi.org/10.1080/02602938.2024.2301722
    Ma, H., & Zheng, H. (2024, 2024//). Text Semantics to Image Generation: A Method of Building Facades Design Base on Stable Diffusion Model. Phygital Intelligence, Singapore.
    MacWhinnie, L. A. (2003). The information commons: The academic library of the future [Article]. Portal-Libraries and the Academy, 3(2), 241-257. https://doi.org/10.1353/pla.2003.0040
    Mann, L. (2018). Making a Place for Makerspaces in Information Literacy. Reference & User Services Quarterly, 58(2), 82-86. https://doi.org/10.5860/rusq.58.2.6927
    Milton, C. L. (2023). ChatGPT and Forms of Deception. Nursing Science Quarterly, 36(3), 232-233. https://doi.org/10.1177/08943184231169753
    Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. (2019). Application of student's t-test, analysis of variance, and covariance. Ann Card Anaesth, 22(4), 407-411. https://doi.org/10.4103/aca.ACA_94_19
    Montgomery, S. E. (2014). Library Space Assessment: User Learning Behaviors in the Library. The Journal of Academic Librarianship, 40(1), 70-75. https://doi.org/10.1016/j.acalib.2013.11.003
    Moorefield-Lang, H. (2015). Change in the Making: Makerspaces and the Ever-Changing Landscape of Libraries. TechTrends, 59(3), 107-112. https://doi.org/10.1007/s11528-015-0860-z
    Moorefield-Lang, H. M. (2015). When makerspaces go mobile: case studies of transportable maker locations. Library Hi Tech, 33(4), 462-471. https://doi.org/10.1108/lht-06-2015-0061
    Morado, M. F., Melo, A. E., & Jarman, A. (2021). Learning by making: A framework to revisit practices in a constructionist learning environment. British Journal of Educational Technology, 52(3), 1093-1115. https://doi.org/10.1111/bjet.13083
    Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum Sample Size Recommendations for Conducting Factor Analyses. International Journal of Testing, 5(2), 159-168. https://doi.org/10.1207/s15327574ijt0502_4
    Nagle, S. B. (2021). Maker Services in Academic Libraries: A Review of Case Studies [Article]. New Review of Academic Librarianship, 27(2), 184-200. https://doi.org/10.1080/13614533.2020.1749093
    Nascimento, S., & Polvora, A. (2018). Maker Cultures and the Prospects for Technological Action. Sci Eng Ethics, 24(3), 927-946. https://doi.org/10.1007/s11948-016-9796-8
    Nitecki, D. A. (2011). Space Assessment as a Venue for Defining the Academic Library. The Library Quarterly, 81(1), 27-59. https://doi.org/10.1086/657446
    Nunes, A. F., Monteiro, P. L., & Nunes, A. S. (2020). Factor structure of the convergence insufficiency symptom survey questionnaire. Plos One, 15(2), Article e0229511. https://doi.org/10.1371/journal.pone.0229511
    Obenza, B., Salvahan, A., Rios, A. N., Solo, A., Alburo, R. A., & Gabila, R. J. (2023). University Students' Perception and Use of ChatGPT: Generative Artificial Intelligence (AI) in Higher Education. International Journal of Human Computing Studies, 5. https://doi.org/10.5281/zenodo.10360697
    Ojennus, P., & Watts, K. A. (2017). User preferences and library space at Whitworth University Library. Journal of Librarianship and Information Science, 49(3), 320-334. https://doi.org/10.1177/0961000615592947
    Oppenlaender, J. (2023). A taxonomy of prompt modifiers for text-to-image generation. Behaviour & Information Technology, 1-14. https://doi.org/10.1080/0144929X.2023.2286532
    Paananen, V., Oppenlaender, J., & Visuri, A. (2023). Using text-to-image generation for architectural design ideation. International Journal of Architectural Computing. https://doi.org/10.1177/14780771231222783
    Pierard, C., & Bordeianu, S. (2016). Learning commons reference collections in ARL libraries. REFERENCE SERVICES REVIEW, 44(3), 411-430. https://doi.org/10.1108/RSR-02-2016-0014
    Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., & Clark, J. (2021). Learning transferable visual models from natural language supervision. International conference on machine learning,
    Randtke, W., Bareford, L., & Tooley, A. (2022). 3D Printing on a Shoestring: How to Avoid a Costly Ventilation Retrofit. Computers in Libraries, 42(7), 23-27.
    Reno, T. I. (2012). University of Nevada, Reno library first in nation to offer 3D printing campuswide. This Is Reno. https://thisisreno.com/2012/07/university-of-nevada-reno-library-first-in-nation-to-offer-3d-printing-campuswide/
    Rice, S., Crouse, S. R., Winter, S. R., & Rice, C. (2024). The advantages and limitations of using ChatGPT to enhance technological research. Technology in Society, 76, Article 102426. https://doi.org/10.1016/j.techsoc.2023.102426
    Rogers, A. S. (2016). The librarian’s role in academic makerspaces. Proceedings of the 1st International Symposium on Academic Makerspaces,
    Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10684-10695.
    Rouse, R., & Rouse, A. G. (2022). Taking the maker movement to school: A systematic review of preK-12 school-based makerspace research. Educational Research Review, 35, 100413. https://doi.org/10.1016/j.edurev.2021.100413
    Saari, H., Åkerman, M., Kieslinger, B., Myllyoja, J., & Sipos, R. (2021). How Open Is the Maker Movement? Integrative Literature Review of the Openness Practices in the Global Maker Movement. Sustainability, 13(24). https://doi.org/10.3390/su132413559
    Saltz, J. (2020). How to be an artist ([First hardcover] ed.). Riverhead Books.
    Santos, I., Castro, L., Rodriguez-Fernandez, N., Torrente-Patiño, Á., & Carballal, A. (2021). Artificial Neural Networks and Deep Learning in the Visual Arts: a review. Neural Computing and Applications, 33(1), 121-157. https://doi.org/10.1007/s00521-020-05565-4
    Santos, I. M., Ali, N., & Hill, A. (2016). Students as Co-designers of a Virtual Learning Commons: Results of a Collaborative Action Research Study. The Journal of Academic Librarianship, 42(1), 8-14. https://doi.org/10.1016/j.acalib.2015.09.006
    Santoso, S. M., & Wicker, S. B. (2014). The future of three-dimensional printing: Intellectual property or intellectual confinement? New Media & Society, 18(1), 138-155. https://doi.org/10.1177/1461444814538647
    Sarpong, D., Ofosu, G., Botchie, D., & Clear, F. (2020). Do-it-yourself (DiY) science: The proliferation, relevance and concerns. Technological Forecasting and Social Change, 158, 120127. https://doi.org/10.1016/j.techfore.2020.120127
    Scalfani, V. F., & Sahib, J. (2013). A model for managing 3D printing services in academic libraries. Issues in Science and Technology Librarianship, 72(Spring), 1-13.
    Schad, M., & Jones, W. M. (2020). The Maker Movement and Education: A Systematic Review of the Literature. Journal of Research on Technology in Education, 52(1), 65-78. https://doi.org/10.1080/15391523.2019.1688739
    Seal, R. A. (2007). The information commons handbook. PORTAL-LIBRARIES AND THE ACADEMY, 7(3), 389-390. https://doi.org/10.1353/pla.2007.0037
    Sheikh, A. (2015). Development of Information Commons in University Libraries of Pakistan: The Current Scenario. The Journal of Academic Librarianship, 41(2), 130-139. https://doi.org/10.1016/j.acalib.2015.01.002
    Smith, J. S., Hsu, Y.-C., Zhang, L., Hua, T., Kira, Z., Shen, Y., & Jin, H. (2023). Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv preprint arXiv:2304.06027.
    StabilityAI. (2022). Stable Diffusion Public Release. Stability AI. Retrieved 3 March from https://stability.ai/news/stable-diffusion-public-release
    StabilityAI. (2023a). Announcing SDXL 1.0. Stability AI. Retrieved 26 July from https://stability.ai/news/stable-diffusion-sdxl-1-announcement
    StabilityAI. (2023b). Celebrating one year(ish) of Stable Diffusion … and what a year it’s been! . Stability AI. Retrieved 3 Oct from https://stability.ai/news/celebrating-one-year-of-stable-diffusion
    Stöckl, A. (2023). Evaluating a Synthetic Image Dataset Generated with Stable Diffusion. Proceedings of Eighth International Congress on Information and Communication Technology, Singapore.
    Su, Y., Lin, Y., & Lai, C. (2023). Collaborating with ChatGPT in argumentative writing classrooms. Assessing Writing, 57, 100752. https://doi.org/https://doi.org/10.1016/j.asw.2023.100752
    Sweeny, R. W. (2017). Making and breaking in an art education makerspace. Journal of Innovation and Entrepreneurship, 6(1), 1-10. https://doi.org/https://doi.org/10.1186/s13731-017-0071-2
    Tabares, R., & Boni, A. (2022). Maker culture and its potential for STEM education. INTERNATIONAL JOURNAL OF TECHNOLOGY AND DESIGN EDUCATION. https://doi.org/10.1007/s10798-021-09725-y
    Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47-63. https://doi.org/10.1016/j.neunet.2018.12.002
    Thomas, B., Van Horne, S., Jacobson, W., & Anson, M. (2015). The design and assessment of the Learning Commons at the University of Iowa. The Journal of Academic Librarianship, 41(6), 804-813. https://doi.org/10.1016/j.acalib.2015.09.005
    Turner, A., Welch, B., & Reynolds, S. (2013). Learning Spaces in Academic Libraries – A Review of the Evolving Trends. Australian Academic & Research Libraries, 44(4), 226-234. https://doi.org/10.1080/00048623.2013.857383
    Vahdat, A., & Kreis, K. (2022, April 26). Improving Diffusion Models as an Alternative To GANs, Part 1. Technical Blog. https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
    Vartiainen, H., & Tedre, M. (2023). Using artificial intelligence in craft education: crafting with text-to-image generative models. Digital Creativity, 34(1), 1-21. https://doi.org/10.1080/14626268.2023.2174557
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
    Verdonck, M., Greenaway, R., Kennedy-Behr, A., & Askew, E. (2019). Student experiences of learning in a technology-enabled learning space. INNOVATIONS IN EDUCATION AND TEACHING INTERNATIONAL, 56(3), 270-281. https://doi.org/10.1080/14703297.2018.1515645
    Vuopala, E., Guzmán Medrano, D., Aljabaly, M., Hietavirta, D., Malacara, L., & Pan, C. (2020). Implementing a maker culture in elementary school – students’ perspectives. Technology, Pedagogy and Education, 29(5), 649-664. https://doi.org/10.1080/1475939X.2020.1796776
    Wang, C., & Chung, J. (2023). Research on AI Painting Generation Technology Based on the [Stable Diffusion]. International journal of advanced smart convergence, 12(2), 90-95.
    Wang, S., & Kim, S. (2022). Users’ emotional and behavioral responses to deepfake videos of K-pop idols. Computers in Human Behavior, 134, 107305. https://doi.org/https://doi.org/10.1016/j.chb.2022.107305
    Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian journal of paramedicine, 8, 1-13.
    Wong, A., & Partridge, H. (2016). Making as Learning: Makerspaces in Universities. Australian Academic & Research Libraries, 47(3), 143-159. https://doi.org/10.1080/00048623.2016.1228163
    Wu, J., Gan, W., Chen, Z., Wan, S., & Lin, H. (2023). Ai-generated content (aigc): A survey. arXiv preprint arXiv:2304.06632.
    Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q. L., & Tang, Y. (2023). A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136. https://doi.org/10.1109/JAS.2023.123618
    Wu, X., Sun, K., Zhu, F., Zhao, R., & Li, H. (2023). Human Preference Score: Better Aligning Text-to-Image Models with Human Preference. arXiv preprint arXiv:2303.14420.
    Wu, Y., Mou, Y., Li, Z., & Xu, K. (2020). Investigating American and Chinese Subjects’ explicit and implicit perceptions of AI-Generated artistic work. Computers in Human Behavior, 104, 106186. https://doi.org/https://doi.org/10.1016/j.chb.2019.106186
    Xu, J., Zhang, X., Li, H., Yoo, C., & Pan, Y. (2023). Is Everyone an Artist? A Study on User Experience of AI-Based Painting System. Applied Sciences, 13(11), 6496. https://www.mdpi.com/2076-3417/13/11/6496
    Yaddanapudi, S., & Yaddanapudi, L. (2019). How to design a questionnaire. Indian Journal of Anesthesia, 63(5), 335-337. https://doi.org/https://doi.org/10.4103/ija.IJA_334_19
    Yang, S., Li, S., & Tong, C. (2023). The Effectiveness of Artificial Intelligence Teaching Methods in Art Subject Classrooms. Journal of Artificial Intelligence Practice, 6(7), 52-59.
    Zhai, X. (2022). ChatGPT user experience: Implications for education. Available at SSRN 4312418.
    Zhan, Q., Chen, X., & Retnawati, E. (2022). Exploring a construct model for university makerspaces beyond curriculum. Education and Information Technologies, 27(3), 3467-3493. https://doi.org/10.1007/s10639-021-10761-3
    Zhang, C., Zhang, C., Zhang, M., & Kweon, I. S. (2023). Text-to-image Diffusion Model in Generative AI: A Survey. arXiv preprint arXiv:2303.07909.
    Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., Dam, S. K., Thwal, C. M., Tun, Y. L., & Huy, L. L. (2023). A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need? arXiv preprint arXiv:2303.11717.
    Zhang, L., Rao, A., & Agrawala, M. (2023). Adding conditional control to text-to-image diffusion models. Proceedings of the IEEE/CVF International Conference on Computer Vision.
    Description: 碩士
    國立政治大學
    圖書資訊學數位碩士在職專班
    110913012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110913012
    Data Type: thesis
    Appears in Collections:[E-learning Master Program of Library and Information Studies] Theses

    Files in This Item:

    File SizeFormat
    301201.pdf1196KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback