English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52334923      Online Users : 467
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152672


    Title: 使用衛星影像估算泰國東部經濟走廊的 LULC、光照強度和社會經濟因素之間的關係
    Estimating the Relationship Between LULC, Light Intensity, and Socioeconomic Factors in Thailand’s Eastern Economic Corridor Using Satellite Images
    Authors: 林玲玉
    Rukhengkul, Thanatcha
    Contributors: 范噶色
    Stephan Van Gasselt
    林玲玉
    Thanatcha Rukhengkul
    Keywords: 城市擴張
    東部經濟走廊
    LULC 分析
    NTL 製圖
    多元迴歸
    碳排放
    Urban expansion
    Eastern Economic Corridor (EEC)
    LULC analysis
    NTL mapping
    Carbon emissions
    Date: 2024
    Issue Date: 2024-08-05 13:28:51 (UTC+8)
    Abstract: 本研究使用 MODIS 和 Sentinel-2 進行土地利用土地覆蓋 (LULC) 分析,並使用 VIIRS 進行夜間燈光 (NTL) 測繪,分析泰國東部經濟走廊 (EEC) 的城市擴張。它使用 2017 年和 2022 年的 Sentinel-2 影像以及 2013 年至 2022 年的 MODIS 提供了土地利用變化的詳細空間分類。在春武里府,結果顯示 LCRPGR 值增加至 1.2745,顯示土地消耗的成長速度快於人口的成長速度。
    然後使用統計分析(包括皮爾遜相關係數和多元迴歸)找出變數之間的關係。分析顯示,NTL 與EEC、省和地區級別的城市化之間存在高度顯著的係數,MODIS 得出的城市地區數據證明更適合省級分析,光照強度與碳排放之間的顯著係數( R² = 70.2 %)增加代表土地利用變化和城市擴張(例如城市和森林面積)影響的自變數。
    然而,LULC 的準確分類涉及合併與回歸相互作用的各種自變量,以闡明 NTL 與城市化(以城市地區衡量)之間的關係。碳排放量與總光發射量之間的相關性根據所使用的碳排放量計算源的不同而不同,導致不同的方向關係。未來的分析可以考慮額外的自變數、不同的衛星來源和碳排放計算方法,以評估這些關係在多年間的變化。
    This study analyzes urban expansion in Thailand's Eastern Economic Corridor (EEC) using MODIS and Sentinel-2 for Land Use Land Cover (LULC) analysis and VIIRS for Nighttime Light (NTL) mapping. It provides a detailed spatial classification of land use changes using Sentinel-2 images from 2017 and 2022 and MODIS from 2013 to 2022. The study also incorporates the SDG 11.3.1 indicator to enhance understanding urbanization dynamics. In Chonburi province, results highlight an increase to a 1.2745 LCRPGR value, indicating that land consumption is increasing faster than the population is growing.
    Then find the relationship between variables using statistical analysis, including Pearson correlation coefficients and Multiple Regression. This analysis shows a highly significant coefficient between NTL and urbanization at EEC, provincial, and district levels, with MODIS-derived urban area data proving more suitable in provincial analysis, a significant coefficient between light intensity and carbon emissions (R² = 70.2 %) after adding independent variables representing impacts of land use change and urban expansion, such as urban and forest areas.
    However, accurate classification of LULC involves incorporating various independent variables that interact with regression to elucidate the relationship between NTL and urbanization, as measured by urban areas. The correlation between carbon emissions and total light emissions varies depending on the carbon emissions calculation source, resulting in different directional relationships. Future analyses could consider additional independent variables, different satellite sources, and carbon emission calculation methods to assess how these relationships vary across multiple years.
    Reference: Alshari, E. A., & Gawali, B. W. (2021). Development of classification system for LULC using remote sensing and GIS. Global Transitions Proceedings, 2(1), 8-17.
    Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2020;13: 5326-50.
    Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
    Ahmed, S. A., & N, H. (2023). Land use and land cover classification using machine learning algorithms in Google Earth Engine. Earth Science Informatics, 16(4), 3057-3073.
    Bennett, M.M., Smith, L.C., 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197.
    Bhandari, R., Xue, W., Virdis, S. G., Winijkul, E., Nguyen, T. P. L., & Joshi, S. (2023). Monitoring and Assessing Urbanization Progress in Thailand between 2000 and 2020 Using SDG Indicator 11.3. 1. Sustainability, 15(12), 9794.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. CRC Press.
    Breiman, L. (2001). "Random forests." Machine learning, 45(1), 5-32.
    Briassoulis, H. (2000). Analysis of land use change: theoretical and modeling approaches, the web book of regional Science. Regional research institute, West Virginia University, USA.
    Chaiwat, T. (2016). Night lights, economic growth, and spatial inequality of Thailand (No. 26). Puey Ungphakorn Institute for Economic Research.
    Chapin, F., S. Jr. and E.J. Kaiser. 1979. Urban Land Use Planning. Urbana: University of Illinois Press.
    Chen, Y., Liu, X., Li, X., 2017a. Analyzing parcel-level relationships between urban land expansion and activity changes by integrating landsat and nighttime light data. Remote Sens. (Basel) 9 (2), 164.
    Congalton, R. G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press.
    Cortes, C., & Vapnik, V. (1995). "Support-vector networks." Machine learning, 20(3), 273-297.
    Eastern Economic Corridor Office of Thailand. (n.d.). Retrieved from https://www.eeco.or.th/en
    Elvidge, C. D., Baugh, K. E., Kihn, E. A., Koehl, H. W., Davis, E. R., & Davis, C. W. (1997). "Relation between satellite observed visible-near infrared emissions, population, and energy consumption." International Journal of Remote Sensing, 18(6), 1373-1379.
    Elvidge, C., Baugh, K., Zhizhin, M., & Hsu, F.-C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pacific Adv. Netw. 35(0), 62. doi: 10.7125/apan.35.7.
    Elvidge, C. D., Sutton, P. C., Ghosh, T., et al. (2014). "A global poverty map derived from satellite data." Computers & Geosciences, 64, 1-13.
    Elvidge, C. D., Baugh, K. E., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). "VIIRS night-time lights." International Journal of Remote Sensing, 38(21), 5860-5879.
    Feng, Z., Huang, G., & Chi, D. (2020). Classification of the complex agricultural planting structure with a semi-supervised extreme learning machine framework. Remote Sensing, 12(22), 3708.
    Foody, G. M., & Arora, M. K. (2006). Uncertainty in Remote Sensing and GIS: Fundamentals. In Foody, G. M., & Arora, M. K. (Eds.), Uncertainty in Remote Sensing and GIS (pp. 1-12). Wiley.
    Foody, G. M. (2008). Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 29(11), 3137-3158.
    Friedl, M. A., et al. (2010). "MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets." Remote Sensing of Environment, 114(1), 168-182.
    Gilbert, K. M., & Shi, Y. (2023). Nighttime Lights and Urban Expansion: Illuminating the Correlation between Built-Up Areas of Lagos City and Changes in Climate Parameters. Buildings, 13(12), 2999.
    Gislason PO, Benediktsson JA, Sveinsson JR. Random Forests for land cover classification. Pattern Recognition Letters 2006; 27(4):294-300.
    Hamad, R. (2020). An assessment of artificial neural networks, support vector machines and decision trees for land cover classification using sentinel-2A data. Sciences, 8(6), 459-464.
    Han, G., Zhou, T., Sun, Y., & Zhu, S. (2022). The relationship between night-time light and socioeconomic factors in China and India. PLoS One, 17(1), e0262503.
    Hung, L.W., Anderson, S.J., Pipkin, A., Fristrup, K., 2021. Changes in night sky brightness after a countywide LED retrofit. J Environ Manage 292, 112776.
    Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective (4th ed.). Pearson.
    Jiang, W., He, G., Long, T., Liu, H., 2017. Ongoing Conflict Makes Yemen Dark: From the Perspective of Nighttime Light. Remote Sens. (Basel) 9 (8), 798.
    Katz, Y., Levin, N., 2016. Quantifying urban light pollution — a comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 177, 65–77.
    Kruasilp, J., Pattanakiat, S., Phutthai, T., Vardhanabindu, P., & Nakmuenwai, P. (2023). Evaluation of land use land cover changes in Nan Province, Thailand, using multi-sensor satellite data and Google Earth Engine. Environ. Nat. Resour. J, 21(2), 186-197.
    Kulpanich, N., Worachairungreung, M., Waiyasusri, K., Sae-Ngow, P., Chaysmithikul, P., & Thanakunwutthirot, K. (2023). Relationship Between Urbanization And Road Networks In The Lower Northeastern Region Of Thailand Using Nighttime Light Satellite Imagery. Geography, Environment, Sustainability, 15(4), 124-133.
    Lambin, E. F., Geist, H. J., & Lepers, E. (2003). "Dynamics of land-use and land-cover change in tropical regions." Annual Review of Environment and Resources, 28, 205-241.
    Lambin, E. F., & Geist, H. J. (Eds.). (2006). Land-use and land-cover change: Local processes and global impacts. Springer.
    Levin, N., Johansen, K., Hacker, J.M., Phinn, S., 2014. A new source for high spatial resolution night time images — the EROS-B commercial satellite. Remote Sens. Environ. 149, 1–12.
    Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote Sensing and Image Interpretation. John Wiley & Sons.
    Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Systems and Science (4th ed.). Wiley.
    Mard, J., Di Baldassarre, G., Mazzoleni, M., 2018. Nighttime light data reveal how flood protection shapes human proximity to rivers. Sci. Adv. 4 (8), eaar5779.
    Moniruzzam, M., Roy, A., Bhatt, C. M., Gupta, A., An, N. T. T., & Hassan, M. R. (2018). Impact analysis of urbanization on land use land cover change for Khulna City, Bangladesh using temporal landsat imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 757-760.
    Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5th ed.). Wiley.
    Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
    Noosuwan, C. (2022). Night-time Lights as a Proxy for Urbanization in Thailand: ภาพถ่าย ดาวเทียม ของ แสง ไฟ ยาม ค่ำคืน และ การ วัด ความ เป็น เมือง ใน ประเทศไทย. Journal of Applied Economics and Management Strategy, 9(2), 252-266.
    Oruc, M., Marangoz, A. M., & Buyuksalih, G. (2004). Comparison of pixel-based and object- oriented classification approaches using Landsat-7 ETM spectral bands.
    Pearson, K. (1895). "Note on regression and inheritance in the case of two parents." Proceedings of the Royal Society of London, 58, 240-242.
    Royal Forest Department. (2022). Final report on the forest land status data project, 2022. Bureau of Forest Land Management, Ministry of Natural Resources and Environment.
    Sangkasem, K., & Puttanapong, N. (2018). Poverty and inequality assessment using DMSP/OLS nighttime light satellite imageries at provincial level in Thailand (Doctoral dissertation, Thesis: Thammasat University).
    Shah, Z., Klugman, N., Cadamuro, G., Hsu, F.-C., Elvidge, C.D., Taneja, J., 2022. The electricity scene from above: exploring power grid inconsistencies using satellite data in Accra, Ghana. Appl. Energy 319, 119237.
    Shi, K., Shen, J., Wu, Y., Liu, S., & Li, L. (2021). Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. International Journal of Digital Earth, 14(11), 1514-1527.
    Shi, K., Wu, Y., Li, D., & Li, X. (2022). Population, GDP, and carbon emissions as revealed by SNPP-VIIRS nighttime light data in China with different scales. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
    Silayot, W., & Chaiyakarm, T. (2023). Monitoring Trends in Light Pollution in Nakhon Ratchasima Province Based on Nighttime Satellite Imagery. Burapha Science Journal, 1250-1264.
    Stern, D. I. (2017). "The role of energy in economic growth." In Handbook of Energy Economics and Policy (pp. 67-104). Elsevier.
    Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land- cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.
    Tsai YH, Stow D, Chen HL, Lewison R, An L, Shi L. Mapping vegetation and land use types in Fanjingshan national nature reserve using Google Earth Engine. Remote Sensing 2018;10(6):Article No. 927.
    Tu, Y., Zhou, H., Lang, W., Chen, T., Li, X., & Xu, B. (2020). A novel cross-sensor calibration method to generate a consistent night-time lights time series dataset. International Journal of Remote Sensing, 41(14), 5482-5502.
    Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104(52), 20666-20671.
    Vibhute, A. D., & Gawali, B. W. (2013). Analysis and modeling of agricultural land use using remote sensing and geographic information system: a review. International Journal of Engineering Research and Applications, 3(3), 081-091.
    Wang, L., Yan, J., Mu, L., & Huang, L. (2020). Knowledge discovery from remote sensing images: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1371.
    Wolman, M.G. 1987. “Criteria for Land Use.” In Resources and World Development, eds. D.J. McLaren and B.J. Skinner, 643-657. New York: John Wiley.
    Xu, G., Xiu, T., Li, X., Liang, X., Jiao, L., 2021. Lockdown induced night-time light dynamics during the COVID-19 epidemic in global megacities. Int. J. Appl. Earth Obs. Geoinf. 102421
    Zhou, Y., Smith, S.J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B., Elvidge, C. D., 2015. A global map of urban extent from nightlights. Environ. Res. Lett. 10 (5), 054011.
    Zheng, Q., Seto, K. C., Zhou, Y., You, S., & Weng, Q. (2023). Nighttime light remote sensing for urban applications: Progress, challenges, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 125-141.
    Description: 碩士
    國立政治大學
    應用經濟與社會發展英語碩士學位學程(IMES)
    111266001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111266001
    Data Type: thesis
    Appears in Collections:[應用經濟與社會發展英語碩士學位學程 (IMES)] 學位論文

    Files in This Item:

    File Description SizeFormat
    600101.pdf4196KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback