English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51854704      Online Users : 482
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152444


    Title: 中小型企業之生成式AI應用階段 - 以顧問產業為例
    Steps for SMEs to Apply Generative AI - Case Studies in the Consulting Industry
    Authors: 黃揚博
    Huang, Yang-Bo
    Contributors: 莊皓鈞
    黃揚博
    Huang, Yang-Bo
    Keywords: 生成式AI
    中小型企業
    顧問
    Generative AI
    SME
    Date: 2024
    Issue Date: 2024-08-05 12:13:27 (UTC+8)
    Abstract: 生成式AI正在加速改變商業世界的運轉方式。AI的概念被提出以有近乎80年之久,深度學習概念也在45年前就出現,但自過往以來,基於運算與應用的局限,AI遲遲難以普及,僅有部分工廠與少數大型企業有能力導入部署。然而,生成式AI將人工智慧得以普及化,背後感知與認知技術的提生大幅增進應用廣度,大量資金進入到AI領域,各類工具百花齊放。在巨大變革之下,往往也蘊藏著商機。而身處台灣的企業們,該如何從中獲取效益,進而幫助自身企業發展?
    基於此問題,本研究採用個案研究法之方式,訪談已實際應用生成式AI之企業。而根據《2023年中小型企業報告》顯示,台灣有98%為中小型企業,又基於近期知識付費之興起,故選擇「中小型顧問企業」作為本次訪談標的。我們實際訪談了四間小型顧問企業,領域涵蓋「行銷」、「高效能」、「創業」。我們將個別探討四間企業真實應用案例,協助企業可以了解生成式AI之真實應用情況。此外,本研究也根據訪談結果,歸納出企業應用生成式AI之階段性目標。
    研究後發現,企業應用AI將分成兩階段。第一階段,在應用初期企業會先使用生成式AI,透過替代或協作的方式優化既有業務的工作效率。研究結果發現,遭遇替代的任務往往具備標準化,或者擁有明確優劣評判標準之特性;而包含認知特色,或者包含個人偏好之任務,則適合採用協作的方式。第二階段,企業開始使用生成式AI創造新業務,擴張新營收來源。經過本次的研究,我們將新業務的種類分成三種:生成式AI課程、生成式AI產品與服務、延伸既有業務。然而,我們也發現企業的應用都集中在「處理標準化任務」、「創意發想」與「整合資料」三大面向,卻較少應用於情境模擬。對於企業而言,可以以此階段作為切入點,思考是否有可以導入之應用。
    Reference: Affairs, M. o. E. (2023). 中小企業白皮書.
    Amare, G. (2012). ReviewReviewing the values of a stabdard operating procedure. Ethiopian journal of health sciences, 22(3).
    Ångström, R. C., Björn, M., Dahlander, L., Mähring, M., & Wallin, M. W. (2023). Getting AI Implementation Right: Insights from a Global Survey. California Management Review, 66(1), 5-22.
    Bandi, A., Adapa, P. V. S. R., & Kuchi, Y. E. V. P. K. (2023). The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet, 15(8), 260.
    Bonoma, T. V. (1985). Case research in marketing: opportunities, problems, and a process. Journal of marketing research, 22(2), 199-208.
    Brynjolfsson, E., & McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
    Charlie Giattino, E. M., Veronika Samborska and Max Roser. (2024). Artificial Intelligence. Our World in Data.
    Chen, A., Xiang, M., Wang, M., & Lu, Y. (2023). Harmony in intelligent hybrid teams: the influence of the intellectual ability of artificial intelligence on human members’ reactions. Information Technology & People, 36(7), 2826-2846.
    Chen, G. (2023). 日本啤酒廠引進生成式 AI 理解消費者喜好,加速新品開發.
    Correani, A., De Massis, A., Frattini, F., Petruzzelli, A. M., & Natalicchio, A. (2020). Implementing a digital strategy: Learning from the experience of three digital transformation projects. California Management Review, 62(4), 37-56.
    Dash, B. (2023). Generative AI Will Transform Virtual Meetings. Harvard Business Review.
    Davaenport, T. H. M., N. (2023). Stop Tinkering with AI. Harvard Business Review, 101(1), 116-127.
    Dennis, A. R., Lakhiwal, A., & Sachdeva, A. (2023). AI agents as team members: Effects on satisfaction, conflict, trustworthiness, and willingness to work with. Journal of Management Information Systems, 40(2), 307-337.
    Eapen, T. T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How generative AI can augment human creativity. Harvard Business Review, 101(4), 56-64.
    Einola, K., & Khoreva, V. (2023). Best friend or broken tool? Exploring the co‐existence of humans and artificial intelligence in the workplace ecosystem. Human Resource Management, 62(1), 117-135.
    Emory, C. W., & Cooper, D. R. (1985). Business Research Methods. Homewood IL: Richard D. Irwin. Inc.
    Ford, D., & McDowell, R. (1999). Managing business relationships by analyzing the effects and value of different actions. Industrial marketing management, 28(5), 429-442.
    Gaessler, F., & Piezunka, H. (2023). Training with AI: Evidence from chess computers. Strategic Management Journal, 44(11), 2724-2750.
    Garengo, P., Biazzo, S., & Bititci, U. S. (2005). Performance measurement systems in SMEs: A review for a research agenda. International journal of management reviews, 7(1), 25-47.
    Geertz, C. (1973). The interpretation of cultures (Vol. 5019). Basic books.
    Gregersen, H., & Bianzino, N. (2023). AI can help you ask better questions-and solve bigger problems. Harvard Business Review, 1-8.
    Helfat, C. E., Kaul, A., Ketchen Jr, D. J., Barney, J. B., Chatain, O., & Singh, H. (2023). Renewing the resource‐based view: New contexts, new concepts, and new methods. Strategic Management Journal, 44(6), 1357-1390.
    Hopf, K., Müller, O., Shollo, A., & Thiess, T. (2023). Organizational Implementation of AI: Craft and Mechanical Work. California Management Review, 66(1), 23-47.
    Keizer, J. A., Dijkstra, L., & Halman, J. I. (2002). Explaining innovative efforts of SMEs.: An exploratory survey among SMEs in the mechanical and electrical engineering sector in The Netherlands. Technovation, 22(1), 1-13.
    Laforet, S., & Tann, J. (2006). Innovative characteristics of small manufacturing firms. Journal of Small Business and Enterprise Development, 13(3), 363-380.
    Lee, J., & Park, J. (2023). AI as “Another I”: Journey map of working with artificial intelligence from AI-phobia to AI-preparedness. Organizational Dynamics, 52(3), 100994.
    McAfee, A., Rock, D., & Brynjolfsson, E. (2023). How to Capitalize on Generative AI. Harvard Business Review, 101(6), 42-48.
    McAfee A., R. D., Brynjolfsson E. (2023). How to Capitalize on Generative AI. Harvard Business Review.
    Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education.". ERIC.
    Miles, M. B. (1979). Qualitative data as an attractive nuisance: The problem of analysis. Administrative science quarterly, 24(4), 590-601.
    Pressplay. (2024). 知識付費產業調查報告.
    Ransbotham, S., Candelon, F., Kiron, D., LaFountain, B., & Khodabandeh, S. (2021). The cultural benefits of artificial intelligence in the Enterprise. MIT Sloan Management Review and Boston Consulting Group.
    Ransbotham, S., Kiron, D., Candelon, F., Khodabandeh, S., & Chu, M. (2022). Achieving individual—and organizational—value with AI. MIT Sloan Management Review.
    Schlegel, D., Schuler, K., & Westenberger, J. (2023). Failure factors of AI projects: results from expert interviews. International journal of information systems and project management: IJISPM, 11(3), 25-40.
    Staff, C. (2024). Generative AI vs. Predictive AI: What’s the Difference? https://www.coursera.org/articles/generative-ai-vs-predictive-ai
    Statista. (2024). Artificial Intelligence - Worldwide. https://www.statista.com/outlook/tmo/artificial-intelligence/worldwide
    Tala Khalifeh, C. (2023). Accounting in the Age of Generative AI. Strategic Finance.
    Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). sage.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    111363072
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111363072
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    307201.pdf1016KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback