Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/152098
|
Title: | 具有狀態轉換的擴散過程及其大離差行為之研究 A study of large deviations of diffusion processes with regime switching |
Authors: | 許慧儀 Hsu, Hui-Yi |
Contributors: | 許順吉 姜祖恕 洪芷漪 Sheu, Shuenn-Jyi Chiang, Tzuu-Shuh Hong, Jyy-I 許慧儀 Hsu, Hui-Yi |
Keywords: | 大離差原則 收縮原則 Schilder定理 Wentzell-Freidlin定理 擴散過程 Markov跳躍過程 Large Deviation Principle Contraction Principle Schilder's Theorem Wentzell-Freidlin Theorem Diffusion Processes Markov Jump Process |
Date: | 2024 |
Issue Date: | 2024-07-01 12:56:06 (UTC+8) |
Abstract: | 我們考慮以下的d維隨機微分方程系統:
dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t在[0,T]之間, X^ε(0) = x在R^d中,
其中W是標準的d維布朗運動,b: R^d × {1,2,...,n} → R^d是有界的,且對於i在{1,2,...,n}中,b(·,i)在全域上滿足Lipschitz連續。狀態轉換過程Y是一個有n個狀態的連續時間馬爾可夫過程,並且與W獨立。我們將考慮當ε趨近於0時,此方程解所形成的擴散過程的大離差原則。
在1987年,Carol Bezuidenhout(參見[2])推導了{X^ε}的大離差原則,其中Y為一般的隨機過程,並將其樣本路徑視為L^1空間中的一個元素。該結果包括了Y為n個狀態馬爾可夫過程的情形。在本論文中,我們將Y的樣本路徑視為具有Skorokhod拓撲的D空間中的一個元素。 We consider the following system of d-dimensional stochastic differential equations, dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t ∈ [0,T], X^ε(0) = x ∈ R^d, where W is a standard d-dimensional Brownian motion, b:R^d × {1,2,...,n} → R^d is bounded and each component b(·,i) is Lipschitz continuous for i in {1,2,...,n}. Also, the switching process Y is modeled by an n-state continuous time Markov jump process and is independent of W. We shall consider the large deviation principle for the law of the solution diffusion process as ϵ → 0.
In 1987, Carol Bezuidenhout (cf. [2]) derived the large deviations principle of these processes {X^ε} for a general random process Y which is considered the sample path of Y as an element of the L^1-space . The result includes the case where Y is an n-state Markov process. In this thesis, we consider the sample path of Y as an element of the D-space with the Skorokhod topology. |
Reference: | [1] Carol Bezuidenhout. Small random perturbation of stochastic systems, Thesis. University of Minnesota, 1985.
[2] Carol Bezuidenhout. A large deviations principle for small perturbations of random evolution equations. The Annals of Probability, pages 646–658, 1987.
[3] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.
[4] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38. Springer Science & Business Media, 2009.
[5] Alexander Eizenberg and Mark Freidlin. Large deviations for markov processes corresponding to pde systems. The Annals of Probability, pages 1015–1044, 1993.
[6] MI Freidlin, AD Wentzell, et al. Random perturbations of dynamical systems [electronic resource].
[7] Qi He and G Yin. Large deviations for multi-scale markovian switching systems with a small diffusion. Asymptotic Analysis, 87(3-4):123–145, 2014.
[8] Frank Hollander. Large deviations, volume 14. American Mathematical Soc., 2000.
[9] Hu Y J. A unified approach to the large deviations for small perturbations of random evolution equations with small perturbations. Sci China Ser A, (7):302–310, 1997.
[10] Vitalii Konarovskyi. An introduction to large deviations. 2019.
[11] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016.
[12] Xiaocui Ma and Fubao Xi. Large deviations for empirical measures of switching diffusion processes with small parameters. Frontiers of Mathematics in China, 10:949–963, 2015.
[13] Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 2. Macmillan New York, 1968.
[14] Anatoly V Skorokhod. Limit theorems for stochastic processes. Theory of Probability & Its Applications, 1(3):261–290, 1956.
[15] Varadhan and SR Srinivasa. Asymptotic probabilities and differential equations. Communications on Pure and Applied Mathematics, 19(3):261–286, 1966. |
Description: | 碩士 國立政治大學 應用數學系 110751003 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110751003 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
100301.pdf | | 563Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|