Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/152083
|
Title: | 探討免費增值商業模式下影響用戶參與度之因素 - 以證券投資交易 App 為例 Examining the Factors Influencing User Engagement in Freemium Business Model: A Case of Stock Trading App |
Authors: | 邱筱涵 Chiu, Hsiao-Han |
Contributors: | 何乾瑋 Ho, Chien-Wei 邱筱涵 Chiu, Hsiao-Han |
Keywords: | 證券投資投資應用程式 免費增值商業模式 用戶參與度 用戶留存 羅吉斯迴歸模型 XGBoost Stock Trading Mobile Application Freemium User Engagement User Retention XGBoost Logistic Regression Model |
Date: | 2024 |
Issue Date: | 2024-07-01 12:43:23 (UTC+8) |
Abstract: | 隨著行動應用程式的迅速發展與普及,用戶對 APP 的依賴和使用時數持續增加,並衍生出多樣化的商業模式,其中免費增值模式尤為絕大多數企業所採用。然而,文獻指出,大多數用戶在下載 APP 後的 90 天內即停止使用。因此,如何提升用戶留存成為企業面臨的挑戰。多篇研究顯示,用戶參與度是影響用戶留存的關鍵因子,故本研究以證券投資交易 APP 為研究案例,探討在免費增值商業模式下,影響用戶參與度的重要因素。
目前既有之相關研究,多是採用問卷研究及次級資料的方式來蒐集相關用戶 APP 使用行為資料。然而,這樣的研究方式局限於用戶意願、態度或下載行為的量測,無法實際衡量用戶於下載後的實際使用行為。故本研究擷取過往文獻中提及的四大構面作為研究框架,進而從個案研究公司資料庫中選取組成研究構面的 APP 使用行為相關變數,並利用機器學習的 XGBoost 演算法,進行重要性排序,篩選出具影響力的變數。最後,使用羅吉斯迴歸模型進行預測分析。
研究結果顯示,無所不在性、交易效率與互動性等構面,對用戶的留存具有正向的顯著影響。然而,知覺個性化則不符合研究假設,對用戶留存產生負向影響。本研究結果期待能夠拓展 APP 免費增值商業模式相關研究的開展,進一步推動該領域研究框架的完善,並即時提供企業在證券投資交易 APP 後續產品開發和精準行銷的實務建議。 With the rapid development and widespread adoption of mobile applications, user dependency and the amount of time spent on apps have continually increased. Several different business models were thus derived, with the freemium business model being predominantly adopted by most companies. However, existing literature indicates that most users left within 90 days of downloading the App. Thus, enhancing user retention is a significant challenge. While multiple studies have shown that user engagement is a key determinant of user retention, this study explores the critical factors that affect user engagement under the freemium business model.
Most extant research relies on survey research and secondary data to collect information on user app usage behavior, which is limited to measuring user intentions, attitudes, or download behaviors and fails to assess actual usage behavior post-download. Consequently, this study draws on previous literature and selects four constructs as the research framework to extract relevant app usage behavior variables from the case company's database. The XGBoost technique in machine learning and logistic regression were used for further analysis.
This study found that ubiquity, transaction efficiency, and interactivity significantly increase user retention, whereas perceived personalization negatively affects user retention. These results are expected to expand research on the freemium business model, refine the research framework in this field, and provide companies with timely and precise marketing recommendations for future stock trading app development. |
Reference: | 一、 中文文獻
臺灣證券交易所 (2024年5月15日)。 【歷年股票市場概況表】年報。 臺灣證券交易所。取自https://www.twse.com.tw/pcversion/zh/statistics/statisticsList?type=07&subType=232
二、 外文文獻
Ahuja, V., & Medury, Y. (2010). Corporate blogs as e-CRM tools–Building consumer engagement through content management. Journal of Database Marketing & Customer Strategy Management, 17, 91-105. Al-Adwan, A. S., Alrousan, M., Al-Soud, A., & Al-Yaseen, H. (2019). Revealing the black box of shifting from electronic commerce to mobile commerce: The case of Jordan. Journal of theoretical and applied electronic commerce research, 14(1), 51-67. AL-Shatnwai, A. M., & Faris, M. (2020). Predicting customer retention using XGBoost and balancing methods. International Journal of Advanced Computer Science and Applications, 11(7). Alba, J., Lynch, J., Weitz, B., Janiszewski, C., Lutz, R., Sawyer, A., & Wood, S. (1997). Interactive home shopping: consumer, retailer, and manufacturer incentives to participate in electronic marketplaces. Journal of marketing, 61(3), 38-53. Alnawas, I., & Aburub, F. (2016). The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. Journal of Retailing and Consumer Services, 31, 313-322. Arora, S., Ter Hofstede, F., & Mahajan, V. (2017). The implications of offering free versions for the performance of paid mobile apps. Journal of marketing, 81(6), 62-78. Ben Jabeur, S., Stef, N., & Carmona, P. (2023). Bankruptcy prediction using the XGBoost algorithm and variable importance feature engineering. Computational Economics, 61(2), 715-741. Bolton, R. N. (1998). A dynamic model of the duration of the customer's relationship with a continuous service provider: The role of satisfaction. Marketing science, 17(1), 45-65. Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of service research, 14(3), 252-271. Chapman, P. M. (1997). Models of engagement: Intrinsically motivated interaction with multimedia learning software University of Waterloo]. Chen, W., Hua, Z., Zhang, Z. G., & Bi, W. (2018). Analysis of freemium business model considering network externalities and consumer uncertainty. Journal of systems science and systems engineering, 27, 78-105. Deng, Y., Lambrecht, A., & Liu, Y. (2023). Spillover effects and freemium strategy in the mobile app market. Management Science, 69(9), 5018-5041. Dinner, I. M., Van Heerde, H. J., & Neslin, S. (2015). Creating customer engagement via mobile apps: How app usage drives purchase behavior. Tuck School of Business Working Paper(2669817). Ellahi, A., & Bokhari, R. H. (2013). Key quality factors affecting users' perception of social networking websites. Journal of Retailing and Consumer Services, 20(1), 120-129. Evans, P. B., & Wurster, T. S. (1997). Strategy and the new economics of information. Harvard business review, 75(5), 70-83. Fang, Y. H. (2017). Beyond the usefulness of branded applications: Insights from consumer–brand engagement and self‐construal perspectives. Psychology & Marketing, 34(1), 40-58. Jacques, R. D. (1996). The nature of engagement and its role in hypermedia evaluation and design South Bank University]. Johnson, G. J., Bruner II, G. C., & Kumar, A. (2006). Interactivity and its facets revisited: Theory and empirical test. Journal of advertising, 35(4), 35-52. Johnson, L., Levine, A., & Smith, R. (2008). NMC Horizon Report: 2008 Australia-New Zealand Edition (0976508702). Kang, M., Shin, D.-H., & Gong, T. (2016). The role of personalization, engagement, and trust in online communities. Information Technology & People, 29(3), 580-596. Kim, E., Lin, J.-S., & Sung, Y. (2013). To app or not to app: Engaging consumers via branded mobile apps. Journal of Interactive Advertising, 13(1), 53-65. Kim, S., & Baek, T. H. (2018). Examining the antecedents and consequences of mobile app engagement. Telematics and Informatics, 35(1), 148-158. Kozinets, R. V. (2014). Social brand engagement: A new idea. NIM Marketing Intelligence Review, 6(2), 8-15. Lee, D., Hosanagar, K., & Nair, H. S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105-5131. Lee, J.-C., & Wang, J. (2022). From offline to online: understanding users' switching intentions from traditional wealth management services to mobile wealth management applications. International Journal of Bank Marketing, 41(2), 369-394. Lemmens, A., & Croux, C. (2006). Bagging and boosting classification trees to predict churn. Journal of Marketing Research, 43(2), 276-286. Li, C.-Y. (2018). Consumer behavior in switching between membership cards and mobile applications: The case of Starbucks. Computers in Human Behavior, 84, 171-184. Li, C.-Y., & Ku, Y.-C. (2018). The power of a thumbs-up: Will e-commerce switch to social commerce? Information & Management, 55(3), 340-357. Liang, T.-P., Chen, H.-Y., & Turban, E. (2009). Effect of personalization on the perceived usefulness of online customer services: A dual-core theory. Proceedings of the 11th International Conference on Electronic Commerce, Liu, C. Z., Au, Y. A., & Choi, H. S. (2014). Effects of freemium strategy in the mobile app market: An empirical study of google play. Journal of management information systems, 31(3), 326-354. Lyons, A. C., & Kass-Hanna, J. (2022). 24 The Evolution of Financial Services in the Digital Age. De Gruyter Handbook of Personal Finance, 405. Magrath, V., & McCormick, H. (2013). Marketing design elements of mobile fashion retail apps. Journal of Fashion Marketing and Management: An International Journal, 17(1), 115-134. Montgomery, A. L., & Smith, M. D. (2009). Prospects for Personalization on the Internet. Journal of Interactive Marketing, 23(2), 130-137. Niculescu, M. F., & Wu, D. J. (2014). Economics of free under perpetual licensing: Implications for the software industry. Information Systems Research, 25(1), 173-199. O'Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938-955. O'Brien, H. L., & Toms, E. G. (2010). The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology, 61(1), 50-69. Payne, H. E., Lister, C., West, J. H., & Bernhardt, J. M. (2015). Behavioral functionality of mobile apps in health interventions: a systematic review of the literature. JMIR mHealth and uHealth, 3(1), e3335. Reime, E. V. (2011). Exploring the freemium business model. Retrieved May 16 2024, from https://www.duo.uio.no/bitstream/handle/10852/12882/Reime.pdf?sequence=3&isAllowed=y Stocchi, L., Pourazad, N., Michaelidou, N., Tanusondjaja, A., & Harrigan, P. (2022). Marketing research on Mobile apps: past, present and future. Journal of the Academy of Marketing Science, 1-31. Tan, F. B., & Chou, J. P. (2008). The relationship between mobile service quality, perceived technology compatibility, and users' perceived playfulness in the context of mobile information and entertainment services. Intl. Journal of Human–Computer Interaction, 24(7), 649-671. Tarute, A., Nikou, S., & Gatautis, R. (2017). Mobile application driven consumer engagement. Telematics and Informatics, 34(4), 145-156. Thomas, J. S. (2001). A methodology for linking customer acquisition to customer retention. Journal of Marketing Research, 38(2), 262-268. Tojib, D., & Tsarenko, Y. (2012). Post-adoption modeling of advanced mobile service use. Journal of Business Research, 65(7), 922-928. Tsao, H.-Y., Campbell, C. L., Sands, S., Ferraro, C., Mavrommatis, A., & Lu, S. (2020). A machine-learning based approach to measuring constructs through text analysis. European Journal of Marketing, 54(3), 511-524. Verhoef, P. C., Reinartz, W. J., & Krafft, M. (2010). Customer engagement as a new perspective in customer management. Journal of service research, 13(3), 247-252. Vivek, S. D., Beatty, S. E., Dalela, V., & Morgan, R. M. (2014). A generalized multidimensional scale for measuring customer engagement. Journal of marketing theory and practice, 22(4), 401-420. Wang, W. T., & Li, H. M. (2012). Factors influencing mobile services adoption: a brand‐equity perspective. Internet research, 22(2), 142-179. Watson, C., McCarthy, J., & Rowley, J. (2013). Consumer attitudes towards mobile marketing in the smart phone era. International Journal of Information Management, 33(5), 840-849. Weichbroth, P. (2020). Usability of mobile applications: a systematic literature study. Ieee Access, 8, 55563-55577. Williamson, O. E. (2007). The economic institutions of capitalism. Firms, markets, relational contracting. Springer. Wu, L. (2015). Factors of continually using branded mobile apps: the central role of app engagement. International Journal of Internet Marketing and Advertising, 9(4), 303-320.
三、 英文資料庫與網路資料
Data.ai. (2024). State of mobile 2024. Retrieved May 15 2024, from https://www.data.ai/en/go/state-of-mobile-2024/ Finance - Worldwide. (n.d.). Retrieved May 15, 2024, from https://www.statista.com/outlook/amo/app/finance/worldwide Harfield, D. (2015). Avoiding mobile app development failure. Retrieved April 15, 2024, from http://www.iphoneglance.com/2015/01/19/avoiding-mobile-app-development-failure/ Rouse, M., & Wigmore, I. (2013). Mobile app. TechTarget. Retrieved May 16 2024, from https://whatis.techtarget.com/definition/mobile-app Statista. (October 19, 2023). Number of mobile app downloads worldwide from 2019 to 2027, by segment (in million downloads) [Graph]. In Statista. Retrieved May 15, 2024, from https://www.statista.com/forecasts/1262881/mobile-app-download-worldwide-by-segment TechCrunch. (January 10, 2024). Number of mobile app downloads worldwide from 2016 to 2023 (in billions) [Graph]. In Statista. Retrieved May 15, 2024, from https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/ |
Description: | 碩士 國立政治大學 國際經營與貿易學系 111351031 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111351031 |
Data Type: | thesis |
Appears in Collections: | [國際經營與貿易學系 ] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
103101.pdf | | 1501Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|