English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52099569      Online Users : 210
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/151995


    Title: 結合SOFAR進行降維分析外匯市場與大宗商品市場避險效果
    The Hedging Effects of Foreign Exchange and Commodity Market in Dimension-Reduced Analysis with SOFAR
    Authors: 陳宇澤
    Chen, Yu-Ze
    Contributors: 徐士勛
    Hsu, Shih-Hsun
    陳宇澤
    Chen, Yu-Ze
    Keywords: 稀疏正交因子回歸法
    避險
    移動窗格
    SOFAR
    Hedge
    Rolling Window
    Date: 2024
    Issue Date: 2024-07-01 12:19:13 (UTC+8)
    Abstract: 本研究試圖結合Uematsu and Yamagata (2021) 所提出的稀疏正交因子迴歸
    法(Sparse Orthogonal Factor Regression, SOFAR) 以及避險模型,針對外匯以及
    大宗商品市場進行避險,樣本期間為2018 年1 月1 日至2023 年12 月31 日,總
    共178 個變量,同時將資料分成升息循環與降息循環進行探討。
    本文應用SOFAR 模型,對外匯以及大宗商品期貨資料進行維度縮減(Dimensional
    Reduction),將縮減後的稀疏因子放入OLS 以及GARCH 模型進行避險比
    率估計,並結合移動窗格法(Rolling Window) ,以訓練比率80% 為基準,分別
    對7 天、15 天、30 天、60 天以及90 天之週期進行樣本外預測。
    本文實證發現,升息循環會使得多變量降維方法無效化,此時著重於單一資產
    避險能夠獲得較佳的績效,而在降息循環時,SOFAR 能夠使大宗商品市場避險
    績效更佳。在全樣本期間下,整體來說,結合SOFAR 進行避險能夠獲得更佳的
    避險績效,並且本文證明在結合SOFAR 模型下,OLS 模型依舊較GARCH 模型
    更適合用於外匯市場以及大宗商品市場之避險,與Lien, Tse, and Tsui (2002) 之
    結果一致。
    This paper aims to integrate the Sparse Orthogonal Factor Regression (SOFAR)
    proposed by Uematsu and Yamagata (2021) with hedging models to conduct hedging
    strategies for the foreign exchange and commodity markets. The sample period
    spans from January 1, 2018, to December 31, 2023, encompassing a total of 178
    variables. The data is divided into interest rate hike and cut cycles for further
    analysis.
    The SOFAR model is applied to foreign exchange and commodity futures data
    for dimensional reduction, with the resulting sparse factors incorporated into OLS
    and GARCH models for hedging ratio estimation. Additionally, a rolling window
    approach is utilized with an 80% training ratio to perform out-of-sample forecasts
    for 7-day, 15-day, 30-day, 60-day, and 90-day periods.
    Empirical findings indicate that during interest rate hike cycles, multivariate
    dimensional reduction methods become ineffective, and focusing on hedging single
    assets yields better performance. Conversely, during interest rate cut cycles, SOFAR
    enhances the hedging performance in the commodity markets. Over the entire
    sample period, integrating SOFAR for hedging generally results in superior hedging
    performance. Furthermore, this study demonstrates that, within the context of the
    SOFAR model, the OLS model remains more suitable for hedging in the foreign
    exchange and commodity markets compared to the GARCH model, corroborating
    the findings of Lien, Tse, and Tsui (2002).
    Reference: Ahn, Seung C, and Alex R Horenstein. 2013. “Eigenvalue Ratio Test for the Number of Factors.”
    Econometrica, 81(3), 1203 – 1227.
    Bai, Jushan, and Serena Ng. 2002. “Determining the Number of Factors in Approximate Factor
    Models”Econometrica, 70(1), 191–221.
    Baillie, Richard T, and Robert J Myers. 1991. “Bivariate GARCH Estimation of the Optimal
    Commodity Futures Hedge.”Journal of Applied Econometrics, 6(2), 109–124.
    Bollerslev, Tim. 1990. “Modelling the Coherence in Short-Run Nominal Exchange Rates: a Multivariate
    Generalized ARCH Model.”The Review of Economics and Statistics, 498–505.
    Chamberlain, Gary, and Michael Rothschild. 1982. “Arbitrage, Factor Structure, and Mean-
    Variance Analysis on Large Asset Markets.”Econometrica, 51, 1281–1304.
    Chen, Yu-Chin, Kenneth S Rogoff and Barbara Rossi. 2010. “Can Exchange Rates Forecast
    Commodity Prices?”The Quarterly Journal of Economics, 125(3), 1145–1194.
    Corbet, Shaen, Yang Greg Hou, Yang Hu and Les Oxley. 2022. “The Influence of the COVID-19
    Pandemic on the Hedging Functionality of Chinese Financial Markets.”Research in International
    Business and Finance, 59, 101510.
    Ederington, Louis H. 1979. “The Hedging Performance of the New Futures Markets.”The Journal
    of Finance, 34(1), 157–170.
    Engle, Robert. 2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized
    Autoregressive Conditional Heteroskedasticity Models.”Journal of Business & Economic
    Statistics, 20(3), 339–350.
    Ferraro, Domenico, Kenneth Rogoff and Barbara Rossi. 2015. “Can Oil Prices Forecast Exchange
    Rates? An Empirical Analysis of the Relationship between Commodity Prices and Exchange
    Rates.”Journal of International Money and Finance, 54, 116–141.
    Ghosh, A. 1993. “Cointegration and Error Correction Models: Intertemporal Causality between
    Index and Futures Prices.”The Journal of Futures Markets (1986-1998), 13(2), 193.
    Ghosh, A. 1993. “Hedging with Stock Index Futures: Estimation and Forecasting with Error
    Correction Model.”Journal of Futures Markets, 13, 743–752.
    Goss, BA, BS Yamey and Jerome L Stein. 1976. “The Simultaneous Determination of Spot and
    Futures Prices.”The Economics of Futures Trading, 124–130.
    Hammoudeh, Shawkat M, Yuan Yuan, Michael McAleer and Mark A Thompson. 2010. “Precious
    Metals–Exchange Rate Volatility Transmissions and Hedging Strategies.”International Review
    of Economics & Finance, 19(4), 633–647.
    Holmes, Phil. 1996. “Stock Index Futures Hedging: Hedge Ratio Estimation, Duration Effects,
    Expiration Effects and Hedge Ratio Stability.”Journal of Business Finance & Accounting,
    23(1), 63–77.
    Hsiang-Tai Lee, Kang and Ko. 2010. “An ICA-GARCH Model for Dynamic Futures Hedging”
    Journal of Management, 28(2), 171–189.
    Javanmard, Adel, and Andrea Montanari. 2014. “Confidence Intervals and Hypothesis Testing for
    High Dimensional Regression.”The Journal of Machine Learning Research, 15(1), 2869–2909.
    Kroner, Kenneth F, Kevin P Kneafsey and Stijn Claessens. 1995. “Forecasting Volatility in
    Commodity Markets.”Journal of Forecasting, 14(2), 77–95.
    Ku, Yuan-Hung Hsu, Ho-Chyuan Chen and Kuang-hua Chen. 2007. “On the Application of the
    Dynamic Conditional Correlation Model in Estimating Optimal Time-varying Hedge Ratios.”
    Applied Economics Letters, 14(7), 503–509.
    Lien, Donald, Yiu Kuen Tse and Albert KC Tsui. 2002. “Evaluating the Hedging Performance of
    The Constant-Correlation GARCH Model.”Applied Financial Economics, 12(11), 791–798.
    Onatski, Alexei. 2010. “Determining the Number of Factors from Empirical Distribution of
    Eigenvalues.”The Review of Economics and Statistics, 92(4), 1004–1016.
    Uematsu, Yoshimasa, and Takashi Yamagata. 2022. “Estimation of Sparsity-Induced Weak Factor
    Models.”Journal of Business & Economic Statistics, 41(1), 213–227.
    Uematsu, Yoshimasa, Yingying Fan, Kun Chen, Jinchi Lv and Wei Lin. 2019.“SOFAR: large-scale
    association network learning.”IEEE Transactions on Information Theory, 65(8), 4924–4939.
    Van de Geer, Sara, Peter Bühlmann, Ya’acov Ritov and Ruben Dezeure. 2014.“On Asymptotically
    Optimal Confidence Regions and Tests for High-Dimensional Models.”Annals of Statistics,
    42(3), 1166–1202.
    Wu, Edmond HC, Philip LH Yu and Wai Keung Li. 2006. “Value at Risk Estimation using
    Independent Component Analysis-Generalized Autoregressive Conditional Heteroscedasticity(ICA-GARCH) Models.”International Journal of Neural Systems, 16(05), 371–382.
    Zainudin, Ahmad Danial, and Azhar Mohamad. 2023. “Pandemic Impact on the Co-Movement
    and Hedging Effectiveness of the Global Futures Markets.”Investment Analysts Journal, 52(2),
    132–152.
    Description: 碩士
    國立政治大學
    經濟學系
    111258028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111258028
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802801.pdf1049KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback