Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/151995
|
Title: | 結合SOFAR進行降維分析外匯市場與大宗商品市場避險效果 The Hedging Effects of Foreign Exchange and Commodity Market in Dimension-Reduced Analysis with SOFAR |
Authors: | 陳宇澤 Chen, Yu-Ze |
Contributors: | 徐士勛 Hsu, Shih-Hsun 陳宇澤 Chen, Yu-Ze |
Keywords: | 稀疏正交因子回歸法 避險 移動窗格 SOFAR Hedge Rolling Window |
Date: | 2024 |
Issue Date: | 2024-07-01 12:19:13 (UTC+8) |
Abstract: | 本研究試圖結合Uematsu and Yamagata (2021) 所提出的稀疏正交因子迴歸 法(Sparse Orthogonal Factor Regression, SOFAR) 以及避險模型,針對外匯以及 大宗商品市場進行避險,樣本期間為2018 年1 月1 日至2023 年12 月31 日,總 共178 個變量,同時將資料分成升息循環與降息循環進行探討。 本文應用SOFAR 模型,對外匯以及大宗商品期貨資料進行維度縮減(Dimensional Reduction),將縮減後的稀疏因子放入OLS 以及GARCH 模型進行避險比 率估計,並結合移動窗格法(Rolling Window) ,以訓練比率80% 為基準,分別 對7 天、15 天、30 天、60 天以及90 天之週期進行樣本外預測。 本文實證發現,升息循環會使得多變量降維方法無效化,此時著重於單一資產 避險能夠獲得較佳的績效,而在降息循環時,SOFAR 能夠使大宗商品市場避險 績效更佳。在全樣本期間下,整體來說,結合SOFAR 進行避險能夠獲得更佳的 避險績效,並且本文證明在結合SOFAR 模型下,OLS 模型依舊較GARCH 模型 更適合用於外匯市場以及大宗商品市場之避險,與Lien, Tse, and Tsui (2002) 之 結果一致。 This paper aims to integrate the Sparse Orthogonal Factor Regression (SOFAR) proposed by Uematsu and Yamagata (2021) with hedging models to conduct hedging strategies for the foreign exchange and commodity markets. The sample period spans from January 1, 2018, to December 31, 2023, encompassing a total of 178 variables. The data is divided into interest rate hike and cut cycles for further analysis. The SOFAR model is applied to foreign exchange and commodity futures data for dimensional reduction, with the resulting sparse factors incorporated into OLS and GARCH models for hedging ratio estimation. Additionally, a rolling window approach is utilized with an 80% training ratio to perform out-of-sample forecasts for 7-day, 15-day, 30-day, 60-day, and 90-day periods. Empirical findings indicate that during interest rate hike cycles, multivariate dimensional reduction methods become ineffective, and focusing on hedging single assets yields better performance. Conversely, during interest rate cut cycles, SOFAR enhances the hedging performance in the commodity markets. Over the entire sample period, integrating SOFAR for hedging generally results in superior hedging performance. Furthermore, this study demonstrates that, within the context of the SOFAR model, the OLS model remains more suitable for hedging in the foreign exchange and commodity markets compared to the GARCH model, corroborating the findings of Lien, Tse, and Tsui (2002). |
Reference: | Ahn, Seung C, and Alex R Horenstein. 2013. “Eigenvalue Ratio Test for the Number of Factors.” Econometrica, 81(3), 1203 – 1227. Bai, Jushan, and Serena Ng. 2002. “Determining the Number of Factors in Approximate Factor Models”Econometrica, 70(1), 191–221. Baillie, Richard T, and Robert J Myers. 1991. “Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge.”Journal of Applied Econometrics, 6(2), 109–124. Bollerslev, Tim. 1990. “Modelling the Coherence in Short-Run Nominal Exchange Rates: a Multivariate Generalized ARCH Model.”The Review of Economics and Statistics, 498–505. Chamberlain, Gary, and Michael Rothschild. 1982. “Arbitrage, Factor Structure, and Mean- Variance Analysis on Large Asset Markets.”Econometrica, 51, 1281–1304. Chen, Yu-Chin, Kenneth S Rogoff and Barbara Rossi. 2010. “Can Exchange Rates Forecast Commodity Prices?”The Quarterly Journal of Economics, 125(3), 1145–1194. Corbet, Shaen, Yang Greg Hou, Yang Hu and Les Oxley. 2022. “The Influence of the COVID-19 Pandemic on the Hedging Functionality of Chinese Financial Markets.”Research in International Business and Finance, 59, 101510. Ederington, Louis H. 1979. “The Hedging Performance of the New Futures Markets.”The Journal of Finance, 34(1), 157–170. Engle, Robert. 2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.”Journal of Business & Economic Statistics, 20(3), 339–350. Ferraro, Domenico, Kenneth Rogoff and Barbara Rossi. 2015. “Can Oil Prices Forecast Exchange Rates? An Empirical Analysis of the Relationship between Commodity Prices and Exchange Rates.”Journal of International Money and Finance, 54, 116–141. Ghosh, A. 1993. “Cointegration and Error Correction Models: Intertemporal Causality between Index and Futures Prices.”The Journal of Futures Markets (1986-1998), 13(2), 193. Ghosh, A. 1993. “Hedging with Stock Index Futures: Estimation and Forecasting with Error Correction Model.”Journal of Futures Markets, 13, 743–752. Goss, BA, BS Yamey and Jerome L Stein. 1976. “The Simultaneous Determination of Spot and Futures Prices.”The Economics of Futures Trading, 124–130. Hammoudeh, Shawkat M, Yuan Yuan, Michael McAleer and Mark A Thompson. 2010. “Precious Metals–Exchange Rate Volatility Transmissions and Hedging Strategies.”International Review of Economics & Finance, 19(4), 633–647. Holmes, Phil. 1996. “Stock Index Futures Hedging: Hedge Ratio Estimation, Duration Effects, Expiration Effects and Hedge Ratio Stability.”Journal of Business Finance & Accounting, 23(1), 63–77. Hsiang-Tai Lee, Kang and Ko. 2010. “An ICA-GARCH Model for Dynamic Futures Hedging” Journal of Management, 28(2), 171–189. Javanmard, Adel, and Andrea Montanari. 2014. “Confidence Intervals and Hypothesis Testing for High Dimensional Regression.”The Journal of Machine Learning Research, 15(1), 2869–2909. Kroner, Kenneth F, Kevin P Kneafsey and Stijn Claessens. 1995. “Forecasting Volatility in Commodity Markets.”Journal of Forecasting, 14(2), 77–95. Ku, Yuan-Hung Hsu, Ho-Chyuan Chen and Kuang-hua Chen. 2007. “On the Application of the Dynamic Conditional Correlation Model in Estimating Optimal Time-varying Hedge Ratios.” Applied Economics Letters, 14(7), 503–509. Lien, Donald, Yiu Kuen Tse and Albert KC Tsui. 2002. “Evaluating the Hedging Performance of The Constant-Correlation GARCH Model.”Applied Financial Economics, 12(11), 791–798. Onatski, Alexei. 2010. “Determining the Number of Factors from Empirical Distribution of Eigenvalues.”The Review of Economics and Statistics, 92(4), 1004–1016. Uematsu, Yoshimasa, and Takashi Yamagata. 2022. “Estimation of Sparsity-Induced Weak Factor Models.”Journal of Business & Economic Statistics, 41(1), 213–227. Uematsu, Yoshimasa, Yingying Fan, Kun Chen, Jinchi Lv and Wei Lin. 2019.“SOFAR: large-scale association network learning.”IEEE Transactions on Information Theory, 65(8), 4924–4939. Van de Geer, Sara, Peter Bühlmann, Ya’acov Ritov and Ruben Dezeure. 2014.“On Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models.”Annals of Statistics, 42(3), 1166–1202. Wu, Edmond HC, Philip LH Yu and Wai Keung Li. 2006. “Value at Risk Estimation using Independent Component Analysis-Generalized Autoregressive Conditional Heteroscedasticity(ICA-GARCH) Models.”International Journal of Neural Systems, 16(05), 371–382. Zainudin, Ahmad Danial, and Azhar Mohamad. 2023. “Pandemic Impact on the Co-Movement and Hedging Effectiveness of the Global Futures Markets.”Investment Analysts Journal, 52(2), 132–152. |
Description: | 碩士 國立政治大學 經濟學系 111258028 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111258028 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
802801.pdf | | 1049Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|