政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150268
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51874503      Online Users : 474
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150268


    Title: 以結構和功能性磁振造影研究探討兒童與青少年執行功能及算術能力之腦神經機制
    Investigating Children and Adolescents’ Neural Mechanisms of Executive Functions and Arithmetic Skills Using Structural and Functional MRI Studies
    Authors: 陳心喻
    Chen, Xin-Yu
    Contributors: 張葶葶
    葉俊宏

    Chang, Ting-Ting
    Yeh, Chun-Hung

    陳心喻
    Chen, Xin-Yu
    Keywords: 執行功能
    抑制控制
    工作記憶
    算術
    擴散性磁振造影
    基於纖維束素之分析
    功能性磁振造影
    EF
    inhibition
    working memory
    arithmetic
    dMRI
    FBA
    fMRI
    Date: 2024
    Issue Date: 2024-03-01 14:15:43 (UTC+8)
    Abstract: 本研究探討大腦對執行功能和算術提供的結構性和功能性支持,並特別關注執行功能中抑制控制和工作記憶從兒童到青少年時期的發展軌跡。主要目的為填補以往研究中存在的不一致之處,通常源於參與者年齡範圍和研究方法的不同,以及在成年前很少檢驗或報告認知能力、白質結構與算術間的關係在發展中的變化。研究一利用擴散性磁振造影(diffusion magnetic resonance imaging; dMRI),透過對48名兒童(7.07至8.75歲)和34名青少年(12.33至18.89歲)的樣本進行基於纖維束素之分析(fixel-based analysis),以探索白質結構及其與認知功能間的關聯,發現該關聯存在顯著的發展性改變。兒童組的工作記憶和算術流暢性與胼胝體(corpus callosum)以及與運動、注意力和記憶功能相關的纖維束結構特性相關,顯示白質結構在早期發展中有著獨特的發展模式,可能源於神經纖維的優化及效率化。研究二利用功能性磁振造影(functional magnetic resonance imaging; fMRI)檢驗執行功能與算術問題解決的神經基礎之間的關聯,包含40名兒童(7.04至8.85歲)和27名青少年(12.33至18.89歲)。本研究發現在兒童與青少年中,各有獨特的大腦活化模式與不同執行功能成分相關。我們觀察到在進行簡單算術作業時,抑制能力越好的兒童與抑制能力越差的青少年,在左側腹外側前額葉皮層(ventrolateral prefrontal cortex)的活化越強;工作記憶較好的青少年則在與語言處理和記憶相關的顳葉區(temporal area)出現更強的活化,兒童的大腦活化與工作記憶之間則缺乏相關性。本研究強調了在探索執行功能和算術問題解決的神經相關性時考慮發展階段的重要性,從兒童到青少年,大腦的結構及功能經歷明顯變化,影響對認知能力的支持和執行。未來教育者應根據發展階段制定合宜的策略和干預措施,以促進學習和認知成長。本研究為未來的研究奠定了基礎,以進一步揭示大腦發展及認知功能之間的複雜關係。
    This thesis investigates the structural and functional support the brain offers for executive functions (EFs) and arithmetic, focusing specifically on inhibition and working memory and their developmental trajectory from childhood through adolescence. The primary aim is to rectify gaps and inconsistencies prevalent in prior studies, often stemming from variations in participants' age ranges and research methodologies, and the infrequent examination or reporting of developmental changes in the link between cognitive abilities, white matter structure, along with arithmetic prior to adulthood. In Study 1, a sample comprising 48 children (aged 7.07 to 8.75 years) and 34 adolescents (aged 12.33 to 18.89 years) was examined using fixel-based analysis (FBA) on diffusion magnetic resonance imaging (dMRI) data to explore white matter structure, and its connections to EFs. The findings revealed significant developmental alterations in white matter structure and its association with cognitive abilities. Notably, working memory and arithmetic fluency correlated with the micro- and macrostructure of the corpus callosum (CC) and fiber bundles associated with motor, attention, and memory functions in children, indicating a distinct developmental pattern in white matter tracts and increased neural efficiency, potentially due to synaptic pruning and myelination, during early development. Study 2 utilized functional magnetic resonance imaging (fMRI) to explore the associations between EFs and the neural basis of arithmetic problem solving across different age groups, including 40 children (aged 7.04 to 8.85 years) and 27 adolescents (aged 12.33 to 18.89 years). This study identified unique brain activation patterns associated with EF components that varied markedly across developmental stages. In children, we observed a positive correlation between inhibition ability and task-related activation in the left ventrolateral prefrontal cortex (VLPFC), while a different pattern was observed among adolescents. Additionally, adolescents with stronger working memory exhibited increased activations in areas linked to language and memory, indicating a more efficient arithmetic problem solving approach, likely through retrieval strategies. However, the absence of correlation between task-related brain activations and working memory in children points to potential developmental differences or other contributing factors. These findings emphasize the significance of taking into account developmental stages when exploring the neural correlates of EFs and arithmetic problem solving. The current thesis demonstrates that both the structural and functional aspects of the brain undergo significant changes from childhood to adolescence, affecting the support and execution of cognitive abilities. This information is vital for educators and psychologists, highlighting the need for age-appropriate strategies and interventions aligned with young people's developmental stages to foster learning and cognitive growth. Additionally, this research lays a foundation for future studies to further unravel the intricate relationship between brain development, cognitive functions, and educational outcomes.
    Reference: Allan, N. P., Hume, L. E., Allan, D. M., Farrington, A. L., & Lonigan, C. J. (2014). Relations between inhibitory control and the development of academic skills in preschool and kindergarten: a meta-analysis. Developmental psychology, 50(10), 2368. https://doi.org/10.1037/a0037493
    Allen, K., & Giofrè, D. (2021). A distinction between working memory components as unique predictors of mathematical components in 7–8 year old children. Educational Psychology, 41(6), 678-694. https://doi.org/10.1080/01443410.2020.1857702
    Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and Visuospatial Short-Term and Working Memory in Children: Are They Separable? Child Development, 77(6), 1698-1716. https://doi.org/https://doi.org/10.1111/j.1467-8624.2006.00968.x
    Alloway, T. P., Gathercole, S. E., Willis, C., & Adams, A.-M. (2004). A structural analysis of working memory and related cognitive skills in young children. Journal of Experimental Child Psychology, 87(2), 85-106. https://doi.org/https://doi.org/10.1016/j.jecp.2003.10.002
    Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child neuropsychology, 8(2), 71-82. https://doi.org/10.1076/chin.8.2.71.8724
    Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: The importance of central executive functions. British Journal of Educational Psychology, 78(2), 181-203. https://doi.org/10.1348/000709907X209854
    Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-291. https://doi.org/10.1038/nrn2334
    Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry, 69(12), e55-68. https://doi.org/10.1016/j.biopsych.2010.07.024
    Arsalidou, M., & Taylor, M. J. (2011). Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382-2393. https://doi.org/10.1016/j.neuroimage.2010.10.009
    Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W. S., Swigart, A. G., & Menon, V. (2013). Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 2305-2317. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2013.06.031
    Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage, 27(1), 48-58. https://doi.org/10.1016/j.neuroimage.2005.03.042
    Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. https://doi.org/10.1126/science.1736359
    Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends Cogn Sci, 4(11), 417-423. https://doi.org/10.1016/s1364-6613(00)01538-2
    Baddeley, A. D., & Hitch, G. (1974). Working Memory. Psychology of Learning and Motivation, 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1
    Bailey, D. H., Watts, T. W., Littlefield, A. K., & Geary, D. C. (2014). State and trait effects on individual differences in children's mathematical development. Psychol Sci, 25(11), 2017-2026. https://doi.org/10.1177/0956797614547539
    Balhinez, R., & Shaul, S. (2019). The Relationship Between Reading Fluency and Arithmetic Fact Fluency and Their Shared Cognitive Skills: A Developmental Perspective [Original Research]. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01281
    Barrouillet, P., & Fayol, M. (1998). From algorithmic computing to direct retrieval: Evidence from number and alphabetic arithmetic in children and adults. Memory & Cognition, 26, 355-368. https://doi.org/10.3758/bf03201146
    Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V., & Camos, V. (2009). Working memory span development: a time-based resource-sharing model account. Dev Psychol, 45(2), 477-490. https://doi.org/10.1037/a0014615
    Barrouillet, P., & Lépine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of experimental child psychology, 91(3), 183-204. https://doi.org/10.1016/j.jecp.2005.03.002
    Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B, 111(3), 209-219. https://doi.org/10.1006/jmrb.1996.0086
    Bathelt, J., Gathercole, S. E., Johnson, A., & Astle, D. E. (2018). Differences in brain morphology and working memory capacity across childhood. Developmental Science, 21(3), e12579. https://doi.org/10.1111/desc.12579
    Bedard, A. C., Nichols, S., Barbosa, J. A., Schachar, R., Logan, G. D., & Tannock, R. (2002). The development of selective inhibitory control across the life span. Dev Neuropsychol, 21(1), 93-111. https://doi.org/10.1207/s15326942dn2101_5
    Bellon, E., Fias, W., & De Smedt, B. (2016). Are Individual Differences in Arithmetic Fact Retrieval in Children Related to Inhibition? Front Psychol, 7, 825. https://doi.org/10.3389/fpsyg.2016.00825
    Bendlin, B. B., Fitzgerald, M. E., Ries, M. L., Xu, G., Kastman, E. K., Thiel, B. W., Rowley, H. A., Lazar, M., Alexander, A. L., & Johnson, S. C. (2010). White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Developmental neuropsychology, 35(3), 257-277. https://doi.org/10.1080/87565641003696775
    Benear, S. L., Ngo, C. T., & Olson, I. R. (2020). Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect, 10(7), 331-354. https://doi.org/10.1089/brain.2020.0749
    Best, J. R., & Miller, P. H. (2010). A Developmental Perspective on Executive Function. Child Development, 81(6), 1641-1660. https://doi.org/https://doi.org/10.1111/j.1467-8624.2010.01499.x
    Bigozzi, L., Pezzica, S., & Malagoli, C. (2021). The contribution of attentional processes to calculation skills in second and third grade in a typically developing sample. European Journal of Psychology of Education, 36, 965-988. https://doi.org/https://doi.org/10.1007/s10212-020-00515-z
    Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychology review, 15, 59-71.
    Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol, 26(2), 571-593. https://doi.org/10.1207/s15326942dn2602_3
    Bull, R., & Lee, K. (2014). Executive Functioning and Mathematics Achievement. Child Development Perspectives, 8(1), 36-41. https://doi.org/https://doi.org/10.1111/cdep.12059
    Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental neuropsychology, 19(3), 273-293. https://doi.org/https://doi.org/10.1207/S15326942DN1903_3
    Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron, 33(2), 301-311. https://doi.org/10.1016/s0896-6273(01)00583-9
    Camos, V., & Barrouillet, P. (2011). Developmental change in working memory strategies: from passive maintenance to active refreshing. Developmental psychology, 47(3), 898. https://doi.org/https://doi.org/10.1037/a0023193
    Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. J Exp Psychol Gen, 130(2), 299-315. https://doi.org/10.1037//0096-3445.130.2.299
    Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of experimental child psychology, 146, 66-78. https://doi.org/https://doi.org/10.1016/j.jecp.2016.01.014
    Chaddock-Heyman, L., Erickson, K. I., Voss, M. W., Powers, J. P., Knecht, A. M., Pontifex, M. B., Drollette, E. S., Moore, R. D., Raine, L. B., & Scudder, M. R. (2013). White matter microstructure is associated with cognitive control in children. Biological psychology, 94(1), 109-115. https://doi.org/https://doi.org/10.1016/j.biopsycho.2013.05.008
    Chang, T. T., Lee, P. H., & Metcalfe, A. W. S. (2018). Intrinsic insula network engagement underlying children's reading and arithmetic skills. Neuroimage, 167, 162-177. https://doi.org/10.1016/j.neuroimage.2017.11.027
    Chochon, F., Cohen, L., Van De Moortele, P., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of cognitive neuroscience, 11(6), 617-630. https://doi.org/10.1162/089892999563689
    Cotton, K., & Ricker, T. J. (2021). Working memory consolidation improves long-term memory recognition. J Exp Psychol Learn Mem Cogn, 47(2), 208-219. https://doi.org/10.1037/xlm0000954
    Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res, 29(3), 162-173. https://doi.org/10.1006/cbmr.1996.0014
    Cragg, L. (2016). The development of stimulus and response interference control in midchildhood. Developmental psychology, 52(2), 242. https://doi.org/10.1037/dev0000074
    Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in neuroscience and education, 3(2), 63-68. https://doi.org/10.1016/j.tine.2013.12.001
    Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12-26. https://doi.org/10.1016/j.cognition.2017.01.014
    Cragg, L., & Nation, K. (2008). Go or no-go? Developmental improvements in the efficiency of response inhibition in mid-childhood. Dev Sci, 11(6), 819-827. https://doi.org/10.1111/j.1467-7687.2008.00730.x
    Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. Handbook of clinical neurology, 163, 197-219. https://doi.org/10.1016/B978-0-12-804281-6.00011-2
    D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1-13. https://doi.org/https://doi.org/10.1016/S0926-6410(98)00004-4
    Darki, F., & Klingberg, T. (2015). The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study. Cerebral cortex, 25(6), 1587-1595. https://doi.org/10.1093/cercor/bht352
    Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037-2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006
    De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. Neuroimage, 57(3), 771-781. https://doi.org/10.1016/j.neuroimage.2010.12.037
    De Visscher, A., Berens, S. C., Keidel, J. L., Noël, M.-P., & Bird, C. M. (2015). The interference effect in arithmetic fact solving: An fMRI study. NeuroImage, 116, 92-101. https://doi.org/10.1016/j.neuroimage.2015.04.063
    Demir Ö, E., Prado, J., & Booth, J. R. (2014). The differential role of verbal and spatial working memory in the neural basis of arithmetic. Dev Neuropsychol, 39(6), 440-458. https://doi.org/10.1080/87565641.2014.939182
    Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
    Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., Bishop, S., & Nimmo-Smith, I. (2008). Goal neglect and Spearman's g: competing parts of a complex task. J Exp Psychol Gen, 137(1), 131-148. https://doi.org/10.1037/0096-3445.137.1.131
    Durston, S., Thomas, K. M., Yang, Y., Uluğ, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5(4), F9-F16. https://doi.org/10.1111/1467-7687.00235
    Ekstrom, R. B., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests, 1976. Educational testing service.
    Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis [Systematic Review]. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00180
    Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149. https://doi.org/10.3758/BF03203267
    Fenlon, L. R., Suarez, R., Lynton, Z., & Richards, L. J. (2021). The evolution, formation and connectivity of the anterior commissure. Seminars in Cell & Developmental Biology,
    Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler Jr, D. J., Venkatraman, V., Roddey, J. C., Erhart, M., & McCabe, C. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences, 109(48), 19620-19625. https://doi.org/10.1073/pnas.1208243109
    Forsberg, A., Adams, E. J., & Cowan, N. (2021). Chapter One - The role of working memory in long-term learning: Implications for childhood development. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (Vol. 74, pp. 1-45). Academic Press. https://doi.org/10.1016/bs.plm.2021.02.001
    Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological reviews, 91(4), 1357-1392. https://doi.org/10.1152/physrev.00006.2011
    Fryer, S. L., Frank, L. R., Spadoni, A. D., Theilmann, R. J., Nagel, B. J., Schweinsburg, A. D., & Tapert, S. F. (2008). Microstructural integrity of the corpus callosum linked with neuropsychological performance in adolescents. Brain and cognition, 67(2), 225-233. https://doi.org/10.1152/physrev.00006.2011
    Gaillard, V., Barrouillet, P., Jarrold, C., & Camos, V. (2011). Developmental differences in working memory: Where do they come from? Journal of experimental child psychology, 110(3), 469-479. https://doi.org/10.1016/j.jecp.2011.05.004
    Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychological bulletin, 134(1), 31.
    Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental psychology, 40(2), 177.
    Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. J Exp Child Psychol, 88(2), 121-151. https://doi.org/10.1016/j.jecp.2004.03.002
    Genc, S., Malpas, C. B., Gulenc, A., Sciberras, E., Efron, D., Silk, T. J., & Seal, M. L. (2020). Longitudinal white matter development in children is associated with puberty, attentional difficulties, and mental health. bioRxiv, 607671. https://doi.org/10.1101/607671
    Gilmore, C., Keeble, S., Richardson, S., & Cragg, L. (2015). The role of cognitive inhibition in different components of arithmetic. ZDM, 47(5), 771-782. https://doi.org/10.1007/s11858-014-0659-y
    Glickstein, M., & Doron, K. (2008). Cerebellum: connections and functions. The Cerebellum, 7, 589-594. https://doi.org/10.1007/s12311-008-0074-4
    Goddings, A.-L., & Giedd, J. (2014). Structural brain development during childhood and adolescence. The cognitive neurosciences, 15-22. https://doi.org/10.7551/mitpress/9504.003.0006
    Grazioplene, R., Tseng, W. L., Cimino, K., Kalvin, C., Ibrahim, K., Pelphrey, K. A., & Sukhodolsky, D. G. (2020). Fixel-Based Diffusion Magnetic Resonance Imaging Reveals Novel Associations Between White Matter Microstructure and Childhood Aggressive Behavior. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(5), 490-498. https://doi.org/10.1016/j.bpsc.2019.12.018
    Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189-202. https://doi.org/10.1016/j.actpsy.2010.04.011
    Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human brain mapping, 32(1), 10-21. https://doi.org/10.1002/hbm.20996
    Hughes, C. (1998). Executive function in preschoolers: Links with theory of mind and verbal ability. British Journal of Developmental Psychology, 16(2), 233-253. https://doi.org/10.1111/j.2044-835X.1998.tb00921.x
    Huizinga, M., Dolan, C. V., & Van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 2017-2036. https://doi.org/10.1016/j.neuropsychologia.2006.01.010
    Imbo, I., Vandierendonck, A., & De Rammelaere, S. (2007). The role of working memory in the carry operation of mental arithmetic: Number and value of the carry. Quarterly Journal of Experimental Psychology, 60(5), 708-731. https://doi.org/10.1080/17470210600762447
    Imbo, I., Vandierendonck, A., & Vergauwe, E. (2007). The role of working memory in carrying and borrowing. Psychological research, 71(4), 467-483. https://doi.org/10.1007/s00426-006-0044-8
    Jang, S. H. (2009). A review of corticospinal tract location at corona radiata and posterior limb of the internal capsule in human brain. NeuroRehabilitation, 24(3), 279-283. https://doi.org/10.3233/NRE-2009-0479
    Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., & Kaczynski, K. (2005). Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 53(6), 1432-1440. https://doi.org/10.1002/mrm.20508
    Jolles, D., Wassermann, D., Chokhani, R., Richardson, J., Tenison, C., Bammer, R., Fuchs, L., Supekar, K., & Menon, V. (2016). Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning. Brain Struct Funct, 221(3), 1337-1351. https://doi.org/10.1007/s00429-014-0975-6
    Kelly, C. E., Thompson, D. K., Chen, J., Josev, E. K., Pascoe, L., Spencer-Smith, M. M., Adamson, C., Nosarti, C., Gathercole, S., Roberts, G., Lee, K. J., Doyle, L. W., Seal, M. L., & Anderson, P. J. (2020). Working memory training and brain structure and function in extremely preterm or extremely low birth weight children. Hum Brain Mapp, 41(3), 684-696. https://doi.org/10.1002/hbm.24832
    Klarborg, B., Skak Madsen, K., Vestergaard, M., Skimminge, A., Jernigan, T. L., & Baare, W. F. (2013). Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children. Human brain mapping, 34(12), 3216-3232. https://doi.org/10.1002/hbm.22139
    Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3- to 12-year-old Finnish children. Dev Neuropsychol, 20(1), 407-428. https://doi.org/10.1207/s15326942dn2001_6
    Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci, 14(1), 1-10. https://doi.org/10.1162/089892902317205276
    Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., Herpertz-Dahlmann, B., & Fink, G. R. (2005). Development of attentional networks: An fMRI study with children and adults. NeuroImage, 28(2), 429-439. https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.06.065
    Krogsrud, S. K., Fjell, A. M., Tamnes, C. K., Grydeland, H., Due-Tønnessen, P., Bjørnerud, A., Sampaio-Baptista, C., Andersson, J., Johansen-Berg, H., & Walhovd, K. B. (2018). Development of white matter microstructure in relation to verbal and visuospatial working memory—a longitudinal study. Plos one, 13(4), e0195540. https://doi.org/10.1371/journal.pone.0195540
    Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A, 99(20), 13336-13341. https://doi.org/10.1073/pnas.162486399
    Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77-94. https://doi.org/10.1007/BF03173141
    Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci, 31(30), 10937-10947. https://doi.org/10.1523/jneurosci.5302-10.2011
    Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3), 1044-1055. https://doi.org/10.1016/j.neuroimage.2007.12.053
    Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59-80. https://doi.org/10.1348/026151003321164627
    Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children's executive functions and strategy selection: A study in computational estimation. Cognitive Development, 26(3), 282-294. https://doi.org/10.1016/j.cogdev.2011.01.002
    Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment, 5th ed. Oxford University Press.
    Li, Y., Hu, Y., Wang, Y., Weng, J., & Chen, F. (2013). Individual structural differences in left inferior parietal area are associated with schoolchildrens' arithmetic scores. Frontiers in Human Neuroscience, 7, 844. https://doi.org/10.3389/fnhum.2013.00844
    Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., & Casey, B. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral cortex, 16(4), 553-560. https://doi.org/10.1093/cercor/bhj003
    Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Dev, 75(5), 1357-1372. https://doi.org/10.1111/j.1467-8624.2004.00745.x
    MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychol Bull, 109(2), 163-203. https://doi.org/10.1037/0033-2909.109.2.163
    MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. In The psychology of learning and motivation: Advances in research and theory, Vol. 43. (pp. 163-214). Elsevier Science.
    Madsen, K. S., Baaré, W. F., Vestergaard, M., Skimminge, A., Ejersbo, L. R., Ramsøy, T. Z., Gerlach, C., Åkeson, P., Paulson, O. B., & Jernigan, T. L. (2010). Response inhibition is associated with white matter microstructure in children. Neuropsychologia, 48(4), 854-862. https://doi.org/10.1016/j.neuropsychologia.2009.11.001
    Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. Neuroimage, 61(4), 1444-1460. https://doi.org/10.1016/j.neuroimage.2012.04.020
    Mayer, E., Reicherts, M., Deloche, G., Willadino-Braga, L., Taussik, I., Dordain, M., Van Der Linden, M., & Annoni, J.-M. (2003). Number processing after stroke: Anatomoclinical correlations in oral and written codes. Journal of the International Neuropsychological Society, 9(6), 899-912. https://doi.org/10.1017/S1355617703960103
    McClelland, M. M., Cameron, C. E., Duncan, R., Bowles, R. P., Acock, A. C., Miao, A., & Pratt, M. E. (2014). Predictors of early growth in academic achievement: The head-toes-knees-shoulders task. Frontiers in psychology, 5, 599. https://doi.org/10.3389/fpsyg.2014.00599
    McDermott, J. M., Pérez-Edgar, K., & Fox, N. A. (2007). Variations of the flanker paradigm: assessing selective attention in young children. Behav Res Methods, 39(1), 62-70. https://doi.org/10.3758/bf03192844
    Megías, P., & Macizo, P. (2015). Simple arithmetic development in school age: The coactivation and selection of arithmetic facts. Journal of Experimental Child Psychology, 138, 88-105. https://doi.org/10.1016/j.jecp.2015.04.010
    Megías, P., Macizo, P., & Herrera, A. (2015). Simple arithmetic: evidence of an inhibitory mechanism to select arithmetic facts. Psychological research, 79, 773-784. https://doi.org/10.1007/s00426-014-0603-3
    Menegaux, A., Meng, C., Neitzel, J., Bäuml, J. G., Müller, H. J., Bartmann, P., Wolke, D., Wohlschläger, A. M., Finke, K., & Sorg, C. (2017). Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. Neuroimage, 150, 68-76. https://doi.org/10.1016/j.neuroimage.2017.02.017
    Menon, V. (2016). Working memory in children's math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125-132. https://doi.org/10.1016/j.cobeha.2016.05.014
    Metcalfe, A. W. S., Ashkenazi, S., Rosenberg-Lee, M., & Menon, V. (2013). Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children. Developmental Cognitive Neuroscience, 6, 162-175. https://doi.org/https://doi.org/10.1016/j.dcn.2013.10.001
    Metzler-Baddeley, C., Foley, S., De Santis, S., Charron, C., Hampshire, A., Caeyenberghs, K., & Jones, D. K. (2017). Dynamics of white matter plasticity underlying working memory training: multimodal evidence from diffusion MRI and relaxometry. Journal of cognitive neuroscience, 29(9), 1509-1520. https://doi.org/10.1162/jocn_a_01127
    Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learn Individ Differ, 20(2), 101-109. https://doi.org/10.1016/j.lindif.2009.08.004
    Michel, E., & Molitor, S. (2022). Fine motor skill automatization and working memory in children with and without potential fine motor impairments: An explorative study. Human Movement Science, 84, 102968. https://doi.org/10.1016/j.humov.2022.102968
    Mito, R., Raffelt, D., Dhollander, T., Vaughan, D. N., Tournier, J.-D., Salvado, O., Brodtmann, A., Rowe, C. C., Villemagne, V. L., & Connelly, A. (2018). Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain, 141(3), 888-902. https://doi.org/10.1093/brain/awx355
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
    Monette, S., Bigras, M., & Guay, M. C. (2011). The role of the executive functions in school achievement at the end of Grade 1. J Exp Child Psychol, 109(2), 158-173. https://doi.org/10.1016/j.jecp.2011.01.008
    Moreno, M. B., Concha, L., Gonzalez-Santos, L., Ortiz, J. J., & Barrios, F. A. (2014). Correlation between corpus callosum sub-segmental area and cognitive processes in school-age children. PLoS One, 9(8), e104549. https://doi.org/10.1371/journal.pone.0104549
    Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci, 5(3), 218-228. https://doi.org/10.1038/nrn1345
    Nakajima, R., Kinoshita, M., Shinohara, H., & Nakada, M. (2020). The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain imaging and behavior, 14, 2817-2830. https://doi.org/10.1007/s11682-019-00187-4
    Narayanan, N. S., Prabhakaran, V., Bunge, S. A., Christoff, K., Fine, E. M., & Gabrieli, J. D. E. (2005). The Role of the Prefrontal Cortex in the Maintenance of Verbal Working Memory: An Event-Related fMRI Analysis. Neuropsychology, 19(2), 223-232. https://doi.org/10.1037/0894-4105.19.2.223
    Navas‐Sánchez, F. J., Alemán‐Gómez, Y., Sánchez‐Gonzalez, J., Guzmán‐De‐Villoria, J. A., Franco, C., Robles, O., Arango, C., & Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human brain mapping, 35(6), 2619-2631. https://doi.org/10.1002/hbm.22355
    Niogi, S. N., Mukherjee, P., Ghajar, J., & McCandliss, B. D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Frontiers in neuroanatomy, 4, 832. https://doi.org/10.3389/neuro.05.002.2010
    Østby, Y., Tamnes, C. K., Fjell, A. M., & Walhovd, K. B. (2011). Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia, 49(14), 3854-3862. https://doi.org/10.1016/j.neuropsychologia.2011.10.001
    Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp, 25(1), 46-59. https://doi.org/10.1002/hbm.20131
    Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of experimental child psychology, 80(1), 44-57. https://doi.org/10.1006/jecp.2000.2626
    Peng, P., Namkung, J., Barnes, M., & Sun, C. (2015). A Meta-Analysis of Mathematics and Working Memory: Moderating Effects of Working Memory Domain, Type of Mathematics Skill, and Sample Characteritics. Journal of Educational Psychology, 108. https://doi.org/10.1037/edu0000079
    Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G. (2002). Neural Correlates of Visual Working Memory: fMRI Amplitude Predicts Task Performance. Neuron, 35(5), 975-987. https://doi.org/https://doi.org/10.1016/S0896-6273(02)00817-6
    Peters, L., & De Smedt, B. (2018). Arithmetic in the developing brain: A review of brain imaging studies. Developmental Cognitive Neuroscience, 30, 265-279. https://doi.org/10.1016/j.dcn.2017.05.002
    Peters, L., De Smedt, B., & Op de Beeck, H. P. (2015). The neural representation of Arabic digits in visual cortex. Frontiers in Human Neuroscience, 9, 517. https://doi.org/10.3389/fnhum.2015.00517
    Poldrack, R. A., Temple, E., Protopapas, A., Nagarajan, S., Tallal, P., Merzenich, M., & Gabrieli, J. D. (2001). Relations between the neural bases of dynamic auditory processing and phonological processing: evidence from fMRI. Journal of cognitive neuroscience, 13(5), 687-697. https://doi.org/10.1162/089892901750363235
    Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children's cognitive development. Nat Neurosci, 17(9), 1263-1269. https://doi.org/10.1038/nn.3788
    Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., & Connelly, A. (2017). Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage, 144(Pt A), 58-73. https://doi.org/10.1016/j.neuroimage.2016.09.029
    Rivera, S. M., Reiss, A., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral cortex, 15(11), 1779-1790. https://doi.org/10.1093/cercor/bhi055
    Rosenberg-Lee, M., Barth, M., & Menon, V. (2011). What difference does a year of schooling make? Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving. Neuroimage, 57(3), 796-808. https://doi.org/10.1016/j.neuroimage.2011.05.013
    Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., Simmons, A., Williams, S. C. R., Giampietro, V., Andrew, C. M., & Taylor, E. (2001). Mapping Motor Inhibition: Conjunctive Brain Activations across Different Versions of Go/No-Go and Stop Tasks. NeuroImage, 13(2), 250-261. https://doi.org/https://doi.org/10.1006/nimg.2000.0685
    Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20(1), 351-358. https://doi.org/https://doi.org/10.1016/S1053-8119(03)00275-1
    Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age‐correlated functional development of right inferior fronto‐striato‐cerebellar networks during response inhibition and anterior cingulate during error‐related processes. Human brain mapping, 28(11), 1163-1177. https://doi.org/10.1002/hbm.20347
    Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci, 18(7), 1045-1058. https://doi.org/10.1162/jocn.2006.18.7.1045
    Seghete, K. L. M., Herting, M. M., & Nagel, B. J. (2013). White matter microstructure correlates of inhibition and task-switching in adolescents. Brain research, 1527, 15-28. https://doi.org/10.1016/j.brainres.2013.06.003
    Sharp, D. J., Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C., & Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences, 107(13), 6106-6111. https://doi.org/doi:10.1073/pnas.1000175107
    Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting attention within visual short‐term memory: Development and mechanisms. Child development, 85(2), 578-592. https://doi.org/10.1111/cdev.12150
    Shvartsman, M., & Shaul, S. (2023). The Role of Working Memory in Early Literacy and Numeracy Skills in Kindergarten and First Grade. Children, 10, 1285. https://doi.org/10.3390/children10081285
    Siegler, R. S. (1984). Strategy choices in addition and subtraction: How do children know what to do? Origins of cognitive skills.
    Siegler, R. S. (1998). Emerging minds: The process of change in children's thinking. Oxford University Press.
    Simmonds, D. J., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage, 92, 356-368. https://doi.org/10.1016/j.neuroimage.2013.12.044
    Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23 Suppl 1, S208-219. https://doi.org/10.1016/j.neuroimage.2004.07.051
    Stanescu-Cosson, R., Pinel, P., van de Moortele, P.-F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123(11), 2240-2255. https://doi.org/10.1093/brain/123.11.2240
    Stave, E. A., De Bellis, M. D., Hooper, S. R., Woolley, D. P., Chang, S. K., & Chen, S. D. (2017). Dimensions of attention associated with the microstructure of corona radiata white matter. Journal of child neurology, 32(5), 458-466. https://doi.org/10.1177/0883073816685652
    Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual review of neuroscience, 32, 413-434. https://doi.org/10.1146/annurev.neuro.31.060407.125606
    Takahashi, M., Iwamoto, K., Fukatsu, H., Naganawa, S., Iidaka, T., & Ozaki, N. (2010). White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neuroscience letters, 477(2), 72-76. https://doi.org/10.1016/j.neulet.2010.04.031
    Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 41(10), 1231-1238. https://doi.org/10.1097/00004583-200210000-00013
    Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. (2009). Development of spatial and verbal working memory capacity in the human brain. J Cogn Neurosci, 21(2), 316-332. https://doi.org/10.1162/jocn.2008.21028
    Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage, 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137
    Tsang, J. M., Dougherty, R. F., Deutsch, G. K., Wandell, B. A., & Ben-Shachar, M. (2009). Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. Proceedings of the national academy of sciences, 106(52), 22546-22551. https://doi.org/10.1073/pnas.0906094106
    Urger, S. E., De Bellis, M. D., Hooper, S. R., Woolley, D. P., Chen, S. D., & Provenzale, J. (2015). The superior longitudinal fasciculus in typically developing children and adolescents: diffusion tensor imaging and neuropsychological correlates. Journal of child neurology, 30(1), 9-20. https://doi.org/10.1177/0883073813520503
    Ursache, A., Noble, K. G., Pediatric Imaging, N., & Study, G. (2016). Socioeconomic status, white matter, and executive function in children. Brain and behavior, 6(10), e00531. https://doi.org/10.1002/brb3.531
    van der Knaap, L. J., & van der Ham, I. J. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res, 223(1), 211-221. https://doi.org/10.1016/j.bbr.2011.04.018
    Van der Ven, S. H., Kroesbergen, E. H., Boom, J., & Leseman, P. P. (2012). The development of executive functions and early mathematics: a dynamic relationship. Br J Educ Psychol, 82(Pt 1), 100-119. https://doi.org/10.1111/j.2044-8279.2011.02035.x
    van Eimeren, L., Niogi, S. N., McCandliss, B. D., Holloway, I. D., & Ansari, D. (2008). White matter microstructures underlying mathematical abilities in children. Neuroreport, 19(11), 1117-1121. https://doi.org/10.1097/WNR.0b013e328307f5c1
    Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends Cogn Sci, 12(11), 418-424. https://doi.org/10.1016/j.tics.2008.07.005
    Verhaeghen, P., & Basak, C. (2005). Ageing and switching of the focus of attention in working memory: results from a modified N-back task. Q J Exp Psychol A, 58(1), 134-154. https://doi.org/10.1080/02724980443000241
    Vestergaard, M., Madsen, K. S., Baaré, W. F., Skimminge, A., Ejersbo, L. R., Ramsøy, T. Z., Gerlach, C., Åkeson, P., Paulson, O. B., & Jernigan, T. L. (2011). White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children. Journal of cognitive neuroscience, 23(9), 2135-2146. https://doi.org/10.1162/jocn.2010.21592
    Vogan, V. M., Morgan, B. R., Powell, T. L., Smith, M. L., & Taylor, M. J. (2016). The neurodevelopmental differences of increasing verbal working memory demand in children and adults. Developmental Cognitive Neuroscience, 17, 19-27. https://doi.org/https://doi.org/10.1016/j.dcn.2015.10.008
    Wasserthal, J., Neher, P., & Maier-Hein, K. H. (2018). TractSeg - Fast and accurate white matter tract segmentation. Neuroimage, 183, 239-253. https://doi.org/10.1016/j.neuroimage.2018.07.070
    Wechsler, D. (2003). Wechsler intelligence scale for children–Fourth Edition (WISC-IV). Pearson Assessment.
    Wechsler, D. (2008). Wechsler intelligence scale for adults–Fourth Edition (WISC-IV). Pearson Assessment.
    Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., Pandya, D. N., Hagmann, P., D'Arceuil, H., & de Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267-1277. https://doi.org/10.1016/j.neuroimage.2008.03.036
    Wittfoth, M., Schardt, D. M., Fahle, M., & Herrmann, M. (2009). How the brain resolves high conflict situations: Double conflict involvement of dorsolateral prefrontal cortex. NeuroImage, 44(3), 1201-1209. https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.09.026
    Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 61(4), 1000-1016. https://doi.org/10.1016/j.neuroimage.2012.03.072
    Description: 碩士
    國立政治大學
    心理學系
    110752010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110752010
    Data Type: thesis
    Appears in Collections:[Department of Psychology] Theses

    Files in This Item:

    File Description SizeFormat
    201001.pdf5515KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback